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ABSTRACT

Machine learning-based intrusion detection systems (IDS) have attracted considerable attention for their role
in proactively identifying intrusion attempts and facilitating swift organizational response. While numerous
researchers have conceptually discussed the potential negative impacts of high false alarms in machine
learning-based IDS on organizations and have proposed various methods to reduce them, there is a shortage
of studies that explore how these false alarms can exacerbate cyberattack damage in different organizational
settings and in the face of various cyberattack campaigns. This paper introduces an agent-based modeling
and simulation approach to assess false alarm consequences in machine learning-based IDS during dual
Denial of Service (DoS) and phishing attacks. The IDS with distinct false positive rates, constructed using
the KDD Cup 1999 dataset with diverse machine learning algorithms, were simulated to analyze how these
varying false alarm rates affect the extent of damage caused by phishing and DoS attacks.

Keywords: cybersecurity, false alarm, intrusion detection system, human factors, phishing

1 INTRODUCTION

Researchers have employed a variety of machine learning algorithms to create robust intrusion detection
systems (IDS) [1]. A well-trained ML-based IDS enables the early identification of intrusion attempts by
cybercriminals, empowering organizations to respond promptly and to mitigate potential security breaches.
However, ML-based IDS with high false positive rates can be problematic as they generate numerous false
alarms, leading security teams to invest valuable time in investigating non-existent threats [2]. Given that se-
curity teams’ attention is a limited cybersecurity resource within an organization, the time spent addressing
false positives from the IDS hinders their ability to effectively mitigate or address other cybersecurity vul-
nerabilities. This may provide cybercriminals with opportunities to infiltrate the target organization through
alternative means. To address this issue, machine learning researchers suggest various methods to reduce
the false positives while maintaining high intrusion detection rates [3, 4]. However, there haven’t been many
studies examining how the high false positive rates of IDS can impact the magnitude of cyberattack dam-
age across different organizational settings, cyberattack scenarios, availability of cybersecurity resources,
and defense strategies. In this paper, we present the application of agent-based modeling and simulation
methods to assess the effectiveness of a specific ML-based IDS in mitigating cyberattack damage within
complex cyberattack scenarios. Through this simulation approach, our goal is to examine the negative im-
pacts of high false positive rates in ML-based IDS when the virtual organization is subjected to a dual DoS
and phishing attack. For this study, we conducted training to build multiple IDS using various machine learn-
ing algorithms and KDD Cup 1999 dataset [5]. We designed phishing, data exfiltration, ransomware, and
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DoS attacks based on MITRE ATT&CK tactics and techniques [6]. Additionally, we replicated a medium-
sized organization [7] that experienced a phishing campaign into our simulation framework and modeled
the behavior patterns of IT security officers. In this paper, we present two significant contributions to the
field of cybersecurity and simulation research. First of all, we bridge empirical insights from studies on
human susceptibility to phishing attacks [7] with computer simulations. This interdisciplinary approach al-
lows simulation researchers to model the human element’s vulnerability with good fidelity within complex
cyber attack scenarios, enhancing the realism and efficacy of simulation models. Secondly, we propose a
simulation-based approach to evaluate the potential costs associated with false alarms generated by IDS.
By leveraging simulation technology, we demonstrate the capability to quantify the potential damage from
false alarms from IDS for specific organizations, taking into account their unique cybersecurity resource
constraints.

2 RELATED WORKS

There have been numerous previous studies that have utilized agent-based simulation to model and analyze
cyberattack and defense scenarios. Kotenko employed agent-based modeling and simulation techniques to
assess computer network security, examining the efficacy of security policies in countering various Dis-
tributed Denial of Service (DDoS) attacks [8]. Rajivan et al. employed agent-based modeling to simulate
the behaviors of cyber defense analysts, with a specific focus on team collaboration, to analyze cyber de-
fense performance under various collaboration strategies [9]. Kumar and Carley created an agent-based
network simulation model to examine the patterns of Internet traffic flow during DDoS attack scenarios
[10]. Dobson and Carley introduced the Cyber-FIT framework [11] to simulate the dynamics between at-
tacker and defender teams in cyber warfare scenarios. Their work focused on evaluating the effectiveness
of diverse defense strategies employed by military cyber forces against a range of cyberattacks, such as
DoS, Phishing, and Routing Protocol Attacks. In Cyber-FIT model, Dobson et al. meticulously modeled
cyberattack scenarios using the cyber-kill chain for attacker teams [12] and designed defender teams’ cy-
ber situational awareness perception [13]. Carley and Svoboda modeled the organizational landscape but
overlooked the digital landscape and cyberattacks [14]. Additionally, while Dobson and Carley modeled
the cyber response teams, the organizational impacts were not considered [15]. Addressing this gap, Shin
et al. presented the OSIRIS framework [16, 17, 18], which simulates a human organization incorporating
realistic behavior patterns of end-user agents and their social relationships. During the simulation, OSIRIS
calculates the dynamically changing unique phishing susceptibility of end user agents by considering indi-
vidual human factors assigned to each agent [19]. Modelers can employ logistic regression models derived
from empirical studies that establish the correlation between human factors and phishing susceptibility. This
allows OSIRIS to calculate the phishing susceptibility of each end user agent precisely. OSIRIS designed
cybercriminal agents to execute diverse cyberattack scenarios, including phishing for data exfiltration [18],
ransomware [20], and DoS [16], based on MITRE ATT&CK tactics and techniques [6]. The framework
has been employed to evaluate the effectiveness of human firewall defense strategy against phishing attacks
[18] and various types of ML-based IDS against DoS attacks [16]. In this paper, we use the OSIRIS frame-
work [16, 18, 19] to model the interaction between the human organization and cyberattack campaigns. Our
objective is to observe and assess the negative impact of false positive rates in machine learning-based IDS.

3 CYBERATTACK CAMPAIGN MODEL

In this section, we elucidate the details of cyberattack campaigns simulated within our study. OSIRIS
framework provides the cybercriminal agent [16, 18], responsible for executing the cyberattack campaign
based on MITRE ATT&CK cyberattack tactics and techniques [6]. The duration of the attack spans 11 days,
which corresponds to 15,840 ticks in the simulation environment (1 Tick = 1 Minute). The cyberattack
campaign involves two cybercriminal agents. One agent orchestrates five different types of DoS attacks
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on the server agent within the target virtual organization, aiming to disrupt the organization’s services.
Simultaneously, the other cybercriminal agent conducts a phishing attack with the objective of exfiltrating
and encrypting data on the computing device of the targeted end user agents.

3.1 Denial of Service (DoS) Campaign

The OSIRIS framework offers five distinct types of DoS attacks: Neptune, Smurf, Land, Mailbomb, and
Back attack [16]. All of these attack types are included in the KDD Cup 1999 dataset [5]. If the modeler
specifies the time interval between each attack before initiating the simulation, the cybercriminal agent will
randomly choose one of the five DoS attack types to execute against the target server agent at each interval.

3.2 Phishing Campaign for Data Exfiltration & Ransomware

In prior studies, OSIRIS has modeled and simulated phishing campaigns for both data exfiltration [18] and
ransomware attacks [20], leveraging the MITRE ATT&CK tactics and techniques [6]. This paper extends
this work by modeling phishing campaigns based on real cyberattack scenarios, drawing insights from Dig-
ital Forensics and Incident Response (DFIR) reports that document two distinct incidents [21, 22]. In the
first case, cybercriminals employed a phishing attack utilizing a VBA macro to deceive end users within
an organization [21]. The objective was to gain unauthorized access, collect data through keylogging tech-
niques, and exfiltrate the obtained data using a command and control (C2) server [21]. In the second case,
cybercriminals executed a phishing attack employing a malicious macro embedded in a Microsoft Word
document [22]. The goal was to deceive end users into granting access, leading to the encryption of the or-
ganization’s systems with ransomware [22]. Both reports illustrate the list of MITRE ATT&CK techniques
[6] involved in comprehensive cyberattack campaigns [21, 22]. We meticulously identified and incorporated
missing techniques, focusing particularly on those related to Reconnaissance and Resource Development
tactics. Our approach involved establishing connections between each cybercriminal’s cyber operation and
the corresponding MITRE ATT&CK techniques [6], thereby modeling the entire cyberattack campaign as
a sequence of these techniques. In crafting the 11-day cyberattack campaign, we amalgamated the data
exfiltration campaign from the first report [22], which utilized keylogging and C2 server, with the second
report’s campaign that involved exfiltrating data to the MEGA cloud and encrypting it using ransomware
[21]. This consolidated campaign is summarized in Figure 1. Below, we provide a brief description of
each day’s attack scenario, wherein the cybercriminal agent of OSIRIS follows this sequence of MITRE
ATT&CK techniques [6] to conduct the virtual cyber scenario during the simulation. Detailed information
on the entire cyberattack scenarios can be referenced in the respective DFIR reports [21, 22].

Day 0 : To make the phishing emails more persuasive, cybercriminal agents gather information about end
users’ identities (T1589) from sources such as social media and other publicly accessible websites (T1593).
Additionally, they acquire details about the target organization (T1591) and the websites operated by the
target organization (T1594). Subsequently, cybercriminals procure various tools (T1588.002) and malware
(T1588.001) for use in their cyberattack campaigns. These include phishing emails, malicious Word docu-
ments with macros, C2 servers, MEGA cloud storage, AutoHotkey, Powersploit framework, and RClone.

Day 1 : The cybercriminal agent spreads spear-phishing emails targeted at end user agents within the
designated organization (T1566.001). In the event that an end user agent falls victim to the phishing
email and opens the attached Word document, malicious scripts are deployed onto their computing device
(T1204.002). These scripts, executed through PowerShell (T1059.001), establish persistence by creating
scheduled tasks (T1053). Subsequently, the scripts establish a connection to the Command and Control
(C2) server (T1573.001).

Day 2 : The cybercriminal agent begins by using the Windows Management Instrumentation Command-
Line (WMIC) to gather information about logical disks in a specific location (T1047). Following this, it
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retrieves details about files and directories (T1083). Subsequently, the cybercriminal agent obtains network
configuration information and fetches data about current TCP connections on the system (T1049). Moving
forward, the cybercriminal agent collects a comprehensive set of system-related information, including de-
tails about the operating system, hardware, installed software, and current users (T1082 / T1033). Finally,
it gathers information about the running processes on the system (T1057). The cybercriminal agent pro-
ceeds to execute the Powersploit to acquire domain user data (T1087.002). Subsequently, it compresses the
collected data into a zip file (T1560.001) and exfiltrates it through the command and control (C2) server
(T1041). Following the data collection process, the cybercriminal agent takes steps to clean up discovery
files, removing any indicators that may reveal its presence (T1070.004).

The cybercriminal agents initiate a series of actions, including retrieving the current system time (T1124),
discovering network infrastructure details (T1016.001), enumerating local accounts (T1087.001), gathering
information about files and directories in various system locations (T1083), and employing a PowerShell
script (T1059.001) to extract security account manager information (T1087.002). Subsequently, the cyber-
criminal agent compresses the gathered data into a CAB file (T1560.001) and proceeds to exfiltrate this
CAB file through the Command and Control (C2) server (T1041).

Day 3 : The cybercriminal agent gathers data from the local system and consolidates it into a centralized
location (T1074.001). Subsequently, it exfiltrates the collected data to MEGA cloud storage using RClone,
with a bandwidth limit set to 10 megabytes per second (T1567.002).

Day 4 : The cybercriminal agent establishes a scheduled task named MicrosoftEdgeUpdateTaskMachineUC
(T1053.005), designed to run a keylogging script. This keylogging script captures and records the inputs
made by the targeted end user agent (T1056.001). The logged keystrokes are then stored in a designated
location within the registry (T1112).

Day 5 : The scheduled task named MicrosoftEdgeUpdateTaskMachineUC executes a keylogging script to
captures and records the inputs made by the targeted end user agent (T1056.001). The logged keystrokes are
then stored in a designated location within the registry (T1112). Then, by using PowerShell (T1059.001),
the cybercriminal agent gathers information about the currently running processes on the system (T1057).
Additionally, it retrieves the contents of the temporary directory on the system (T1083).

Day 6 : The cybercriminal agent gathers a list of files and directories within the temporary directory, con-
verting the output to a string format (T1083). The cybercriminal agent then compresses the collected data
into a CAB file (T1560.001) and proceeds to exfiltrate this CAB file through the Command and Control
(C2) server (T1041). Subsequently, it utilizes PowerShell (T1059.001) to transfer the screen capture script
onto the local system (T1185), capturing the screen content of the targeted end user agent’s computing de-
vice (T1113). Finally, collected data is exfiltrated through the Command and Control (C2) server (T1041).
The cybercriminal agent gathers information about the currently logged-in user’s username (T1033). Ad-
ditionally, it checks the status of the Windows Defender service (T1007) and retrieves the antivirus and
antimalware status on the computer (T1518.001).

Day 7 : The scheduled task named MicrosoftEdgeUpdateTaskMachineUC executes a keylogging script to
captures and records the inputs made by the targeted end user agent (T1056.001). The logged keystrokes are
then stored in a designated location within the registry (T1112). The cybercriminal agent then compresses
the collected data into a CAB file (T1560.001) and proceeds to exfiltrate this CAB file through the Command
and Control (C2) server (T1041).

Day 8 : The cybercriminal agent gathers data from the local system and consolidates it into a centralized
location (T1074.001). Subsequently, it exfiltrates the collected data to MEGA cloud storage using RClone,
with a bandwidth limit set to 10 megabytes per second (T1567.002).
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Figure 1: Phishing attack campaign for data exfiltration and ransomware.
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Day 9 : The scheduled task named MicrosoftEdgeUpdateTaskMachineUC executes a keylogging script to
captures and records the inputs made by the targeted end user agent (T1056.001). The logged keystrokes are
then stored in a designated location within the registry (T1112). The cybercriminal agent then compresses
the collected data into a CAB file (T1560.001) and proceeds to exfiltrate this CAB file through the Command
and Control (C2) server (T1041).

Day 10 : The cybercriminal agent gathers data from the local system and consolidates it into a centralized
location (T1074.001). Subsequently, it exfiltrates the collected data to MEGA cloud storage using RClone,
with a bandwidth limit set to 10 megabytes per second (T1567.002). Finally, the cybercriminal agent en-
crypts the files on the end user agent’s local system using ransomware (T1486).

4 VIRTUAL ORGANIZATION MODEL

In this section, we demonstrate the modeling of the virtual organization targeted by cybercriminal agents
during the simulation. OSIRIS [16, 18] offers the user interface that allows modelers to customize their
organization. This involves deploying various end-user agents with unique human factor information, as-
signing diverse computing devices to each end-user agent, establishing formal or informal social networks
among them, and creating connections between server agents and computing devices within the virtual orga-
nization [17, 19]. Additionally, various ML-based IDS can be integrated into the server agent to assess their
effectiveness against intrusion attempts [16]. IT security agents can also be deployed, with customizable
cyberattack defense policies assigned to them.

4.1 End User Agent

Eftimie et al. conducted an empirical phishing simulation involving a software development company with
235 employees [7]. The purpose of this study was to explore the relationship between an individual’s
susceptibility to phishing attacks and various human factors such as age, gender, and the Big Five personality
traits (Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism). This investigation
spanned both pre and post-cybersecurity education phases.

In our study, we replicated this software company, consisting of 235 employees, within the OSIRIS frame-
work. This virtual organization became the target of cybercriminal agents during simulated cyberattack
campaigns. Unfortunately, Eftimie et al.’s empirical study did not disclose demographic information and
Big Five personality scores for each individual [7]. To address this, we utilized age range and gender distri-
bution information, along with mean and standard deviation data for each Big Five Personality trait across
the entire employee population. Leveraging this information, we generated virtual age, gender, and Big Five
Personality information for each end user agent in OSIRIS using normal distribution.

In the initial two phishing campaigns conducted prior to cybersecurity education in Eftimie et al.’s empirical
study, approximately 14.3% of employees fell victim to phishing attempts [7]. Leveraging the Beta values
from Eftimie et al.’s logistic regression model [7], which predicts phishing susceptibility based on age,
gender, and Big Five Personality scores, OSIRIS autonomously computes the unique phishing susceptibility
for each end user agent based on its assigned human factor information (Age, Gender, Big Five Personality
Score) [19]. Subsequently, we simulated phishing campaigns within OSIRIS, mirroring Eftimie et al.’s
empirical phishing simulation [7]. We calibrated the demographic and Big Five Personality scores of the
virtual end user agents until the overall phishing susceptibility matched that of the empirical study. Each end
user agent was assigned a personal computer device agent and adhered to an 8-to-5 weekday work schedule
during the simulation.



Shin, Carley, and Carley

4.2 Server Agent with Intrusion Detection System (IDS)

In OSIRIS, the server agent can be deployed to the virtual organization, generating network traffic data at
each tick. This study assumes that the virtual organization’s network environment mirrors the setting in
which the KDD Cup 1999 dataset [5] was collected. The KDD Cup 1999 dataset [5] was split into two
parts, with 80% utilized as the training set and 20% as the test set, following the methodology of prior work
in OSIRIS [16].

The training set was employed to construct an IDS using various machine learning algorithms. Meanwhile,
the test set serves the purpose of producing network traffic data from the server agent during the simulation
[16]. As depicted in Figure 2, in the absence of intrusion attempts on the server agent, it randomly selects
an array of data from the test set labeled as ‘normal’ and generates that data. Conversely, when a specific
intrusion attempt occurs, the server agent randomly chooses an array of data from the test set with the
corresponding attack label. For instance, in the case of a ‘Back’ DoS attack on the server agent, it randomly
selects an array of data labeled as ‘Back’ from the test set and generates the corresponding network traffic
data.

Figure 2: Mechanism for generating network traffic data in the server agent.

We employed Weka software [23, 24] to construct an IDS, leveraging its diverse set of machine learning
algorithms. Specifically, we selected the Naive Bayes [25], Naive Bayes Multinomial [26], and Bayes Net
[27] algorithms to develop the IDS. The training set was employed to train the model, and its performance
was evaluated on the test set. Table 1 presents the performance metrics of each IDS, including the percentage
of accurately identified ‘Normal’ data as ‘Normal’, the percentage of incorrectly recognizing ‘Normal’
network traffic data as ‘DoS’, and the percentage of accurately capturing the five different types of DoS
attacks. After integrating the IDS with the server agent, if the IDS detects any DoS attack during simulation,
it promptly triggers an alarm to alert the IT security agent. However, IDS cannot monitor phishing attempts
targeting individual end user agents’ computing devices.

Table 1: IDS performance with Naive Bayes, Naive Bayes Multinomial, and Bayes Net algorithms.

Normal False Alarm Rate Neptune Smurf Mailbomb Land Back
Accuracy (Normal→DoS) Accuracy Accuracy Accuracy Accuracy Accuracy

Naive Bayes 38.8% 22.87% 99.2% 99.9% 97.8% 100% 96.1%
Naive Bayes 14.0% 16.14% 99.2% 100% 100% 83.3% 99.4%
Multinomial
Bayes Net 93.7% 0.049% 99.8% 100% 100% 100% 99.7%
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4.3 IT Security Officer Agent

In this study, a single IT security officer agent is deployed. The primary responsibility of the IT security
officer agent is to conduct periodic inspections of computing devices belonging to end user agents. If any
malicious activity is detected during the inspection, the IT security officer agent takes corrective actions and
disconnects the access of the cybercriminal agent. Additionally, in the event of a DoS attack alert from the
IDS, the IT security officer agent promptly examines the network traffic of the server agent. It verifies the
legitimacy of the alarm, a process that typically takes 2 to 4 minutes, and if confirmed as a genuine DoS
attack by the cybercriminal agent, initiates measures to mitigate the attack and restore service. If an IT
security officer receives an alert from the IDS while inspecting an individual computing device belonging to
an end user agent, it will promptly halt the inspection and prioritize checking and mitigating any potential
DoS attacks. Considering variations in cybersecurity capabilities among IT security officers and diverse
organizational cybersecurity policies, the modeler should set two factors pertaining to the IT security agent
before initiating the simulation: 1) the inspection frequency of end user agents’ computing devices and 2) the
probability of accurately identifying and correcting the malicious activities from end user agents’ computing
devices. In this paper, we assume that IT security officers spend one hour inspecting each computing device,
and any detected malicious activity is promptly corrected within that timeframe.

5 MODEL VALIDATION

In this section, we demonstrate the validation process for both the end user agents’ phishing susceptibil-
ity model and the network traffic generation mechanism in the server agent. As explained in section 4.1,
demographic and personality information for each end user agent is randomly generated, relying on pro-
vided statistics from Eftimie et al.’s empirical study [7]. This approach is adopted due to the unavailability
of individual human subjects’ demographic and personality information. Given the difference between the
generated human factor data and the actual human subjects’ human factor data, there exists an inherent dis-
crepancy in the phishing susceptibility of each end user agent compared to real human subjects. To address
this gap and validate the phishing susceptibility of end user agents, we employ the calibration method [28].
This involves conducting a virtual phishing campaign in the simulation model, calculating the overall phish-
ing susceptibility, and adjusting the human factor information of end user agents. The calibration process
iterates until the overall phishing susceptibility of end user agents aligns with the results from the empirical
study, indicating a susceptibility rate of 14.3% [7]. The parameter we calibrate is the ‘age’ range of the end
user agents. In Eftimie et al.’s paper [7], human subjects’ ages ranged from 21 to 56 years old. The age
was the only variable for which only the range is disclosed, while the mean and standard deviation are not
provided. In our calibration process, we consider the upper limit of age (56) as an outlier, narrow down the
age range for each calibration iteration, and randomly assign the age of one end user agent to 56. Ultimately,
the virtual organization, with an age range from 21 to 35 and one outlier at 56, yields the optimal overall
phishing susceptibility close to the empirical result after running 100 different virtual phishing campaigns
(Mean = 14.22%, SD = 1.93%).

In an empirical study, it was observed that small and medium-sized companies, on average, take 9 minutes
to detect a DDoS attack [29]. Given that such companies typically lack an IDS, we adjusted our simulation
model to reflect a recognition time range of 7 to 11 minutes for identifying a DoS attack when no IDS is
integrated into the server agent [16]. In our simulation model, we conducted 13,629 DoS attacks on a target
server without any IDS. On average, it took approximately 9.015 minutes for the organization to recognize
the attack, with a standard deviation of 1.415 minutes. This finding closely aligns with the result obtained
from the empirical DDoS campaign [29].

As outlined in Section 4.2, the server agent generates simulated network traffic data based on the test set of
the KDD 1999 Cup dataset [5]. To validate this synthetic data, we assessed the performance of the same



Shin, Carley, and Carley

machine learning algorithms on a simulated dataset. A one-year (525,960 ticks) simulation was conducted
with a virtual organization exposed to five different types of DoS attacks. Throughout the simulation, we
recorded the performance of each IDS on the simulated network traffic data, which is summarized in Table
2. Comparing the performance of the IDS on our simulated data (Table 2) to its performance on the real test
set (Table 1), the observed difference is within 1%. This validates that our simulated network traffic data
accurately replicates the conditions under which the KDD Cup 1999 dataset [5] was originally collected.

Table 2: IDS performance on simulated network traffic data.

Normal False Alarm Rate Neptune Smurf Mailbomb Land Back
Accuracy (Normal → DoS) Accuracy Accuracy Accuracy Accuracy Accuracy

Naive Bayes 38.81% 23.54% 99.24% 99.93% 97.45% 100% 95.77%
Naive Bayes 13.92% 16.52% 99.27% 100% 100% 82.90% 99.04%
Multinomial
Bayes Net 93.68% 0.045% 99.73% 100% 100% 100% 99.71%

6 VIRTUAL EXPERIMENTS

In this section, we describe the design of our virtual experiments, a dual phishing and Denial of Service
campaign spanning 11 days (15,840 ticks), with each tick equivalent to 1 minute. We constructed a virtual
organization comprising 235 end-user agents with computing device agents, one server agent, and one IT
security officer agent, as detailed in Section 4. We assumed that the deployed IT security officer is pro-
ficient and possesses the ability to identify and rectify phishing attempts by cybercriminal agents for data
exfiltration and ransomware, ensuring a 100% inspection success rate. Two distinct types of cybercriminal
agents were deployed, as explained in Section 3. One cybercriminal agent executed phishing attacks for data
exfiltration and ransomware, while the other performed one of five DoS attacks every 180 minutes (ticks).
For each simulation, we equipped the server agent with one of four different options (No IDS, Naive Bayes
IDS, Naive Bayes Multinomial IDS, Bayes Net IDS). When the IDS triggered an alert about a DoS attack,
the IT security agent promptly inspects server agent to determine the validity of the alarm and mitigated the
attack if it is confirmed. Following empirical study results indicating that small and medium-sized compa-
nies take 9 minutes to recognize a DoS attack and 13 minutes to counter DoS attack after detection [29], we
set the organization’s recognition time to be between 7 and 11 minutes in scenarios where the IDS does not
exist or fails to recognize the attack and 13 minutes to counter and recover the system from the DoS attack.
We executed 100 simulations for each cell (No IDS, Naive Bayes, Naive Bayes Multinomial, Bayes Net),
resulting in a total of 400 simulations. Throughout the simulation, we measured four distinct outcomes:

Average Cybercriminal Agent’s Access Time: This metric gauges the duration in minutes that cybercrim-
inal agents maintained their connection to each compromised computing device before losing it following
the IT security officer agent’s inspection.

Average Successful Data Exfiltration and Ransomware Attempts: As illustrated in Figure 1, there were
ten distinct attempts of data exfiltration and ransomware attempts throughout the 11-day cyberattack cam-
paigns. This metric represents the average number of successful attempts for each compromised computing
device agent over the 11-day cyberattack campaign.

Average Number of Encrypted Computing Devices: This metric depicts the total number of encrypted
computing device agents after the 11-day cyberattack campaign, indicating the number of compromised
devices that the IT security agent failed to inspect during the campaign.

Average Server Downtime in Cyberattack Campaigns: This quantifies the duration in minutes during
which the server agent was down due to the DoS attack campaign throughout the 11-day cyberattack cam-
paign.
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(a) Average cybercriminal agent’s access time to each
compromised computing device (minutes).

(b) Average Successful Data Exfiltration & Ransomware
Attempts.

(c) Average Number of Encrypted Computing Devices
After Cyberattack Campaign.

(d) Average Server Downtime in Cyberattack Campaigns
(Minutes).

Figure 3: Virtual experiment results.

The simulation results are presented in Figure 3. As illustrated in Figure 3d, the integration of any ML-
based IDS (Naive Bayes IDS, Naive Bayes Multinomial IDS, and Bayes Net IDS) into the server agent
proves effective in mitigating total server downtime caused by DoS attacks. However, it is discerned from
Figures 3a, 3b, and 3c that deploying an IDS built with the Naive Bayes algorithm or Naive Bayes Multi-
nomial algorithm amplifies the damage from the phishing campaign compared to the scenario without an
IDS. The severity of damage escalation from phishing follows a hierarchy, with Naive Bayes exhibiting the
most significant impact, followed by Naive Bayes Multinomial, while Bayes Net shows minimal influence.
Referencing Table 1, the false alarm rates, indicating the misidentification of normal signals as DoS, are
22.87%, 16.14%, and 0.049% for Naive Bayes IDS, Naive Bayes Multinomial IDS, and Bayes Net IDS, re-
spectively. Considering the relationship between false alarm rates and the magnitude of worsening damage
from phishing, we can deduce that false alarms generated by the IDS consume valuable time for IT security
officials to ascertain the validity of alarms. This time could otherwise be utilized to inspect end-user agents’
computing devices, countering phishing attempts for data exfiltration and ransomware attacks. The Cyber-
criminal agent conducting phishing attacks exploit this wasted time as an opportunity to prolong access time
to compromised computing devices (Figure 3a), achieve a more data exfiltration and ransomware attempts
(Figure 3b), and accomplish to encrypt a greater number of compromised computing devices (Figure 3c).
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However, in the case of Bayes Net IDS, deploying the ML-based IDS with a low false alarm rate leads
to a reduction in server downtime caused by DoS attacks without exacerbating the magnitude of damage
from phishing campaign. Therefore, based on this simulation study, it becomes apparent that as the false
alarm rate of the ML-based IDS increases under the dual Denial of Service and phishing attack scenario, the
severity of damage from phishing tends to escalate.

7 DISCUSSION AND CONCLUSION

In this paper, we have demonstrated the adverse impact of deploying an ML-based IDS with a high false
alarm rate on the cybersecurity resilience of an organization. Our approach employs agent-based modeling
and simulation to examine the intricate dynamics, particularly when faced with human resource constraints
for inspecting computing devices and mitigating various cyberattacks. While a high-accuracy IDS can
effectively reduce server downtime caused by DoS attacks, the associated high false alarm rate proves to
be a double-edged sword. The substantial time consumed by IT security officials in verifying false alarms
ultimately results in a trade-off, amplifying the damage from other types of attacks, such as phishing for
data exfiltration and ransomware. On the contrary, our findings reveal that deploying an ML-based IDS with
an optimized false alarm rate efficiently minimizes server downtime due to DoS attacks. This reduction is
achieved without exacerbating the magnitude of damage from other concurrent attacks, specifically phishing
attempts.

Our study has several limitations. Firstly, the simulated network traffic data is generated based on the
KDD 1999 Cup dataset [5], which is considered outdated and includes some attacks that are not prevalent in
current times. Secondly, the simulation outcomes may vary depending on the proficiency level of IT security
officers and an organization’s policy regarding the frequency of inspecting computing devices. Lastly, our
current cyberattack model does not specify which system or human vulnerabilities are exploited by each
attack technique during the cyberattack campaign.

Future work should address these limitations. Specifically, incorporating more recent network security and
intrusion detection datasets would enhance the model’s ability to reflect the contemporary network traf-
fic environment. Additionally, exploring the proposed dual cyberattack scenario with different options for
the number of IT security officers, their proficiency levels, and the frequency of computing device inspec-
tions would provide insights into how each factor influences the overall magnitude of cyberattack damage.
Moreover, supplementing the cyberattack model by illustrating how each attack technique exploits specific
vulnerabilities, with reference to resources like MITRE CVE list [30] or the system and human vulnerability
list from CASOS technical report [31], would make the model more realistic and comprehensive.
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