
SIMULATION OF PARALLELIZATION OF DEEP NEURAL NETWORKS BY
DIVIDING DATA

Proc. of the 2024 Annual Simulation Conference (ANNSIM’24), May 20-23, 2024, American University, DC, USA
P.J. Giabbanelli, I. David, C. Ruiz-Martin, B. Oakes and R. Cárdenas, eds.
©2024 Society for Modeling & Simulation International (SCS)

ABSTRACT

This paper explores the methods for parallelizing DNN, including data splitting and K-fold Cross-Validation
(k fCV ) application across deep learning methodologies, focusing on the simulation instead of implementa-
tion. Recent studies show the successful parallelization of DNN thanks to the availability of massive data
sets that can be used for training. However, to the best of our knowledge, there is no DNN simulator to
examine the different methods proposed for such parallelization. In this work, a DNN simulator is proposed
to examine DNN training efficiency and accuracy by using parallel nodes. The parallelization model sim-
ulated in this paper distributes data across n-nodes to leverage the strengths of distributed computing. This
parallelization strategy aims to enhance the robustness and accuracy of models by conducting 10 fCV in a
distributed manner, enabling the simultaneous processing of multiple folds.

Keywords: Data Parallelization, 10-fold Cross-Validation, Scalable Deep Learning

1 INTRODUCTION

Our motivation was the work of Dean et al. [1], where they address the problem of accelerating the train-
ing of deep networks. In recent years, a surge in machine learning datasets has prompted researchers to
explore scaling up machine learning algorithms through parallelization and distribution. Previous work has
primarily focused on linear, convex models and sparse gradients. However, the interest lies in combining
the advantages of both approaches without restricting the model’s form. In deep learning, existing efforts
have concentrated on training small models on single machines. Nevertheless, the focus is on scaling deep
learning techniques to train very large models with billions of parameters without imposing limitations on
the model’s structure. A software framework called DistBelief has been introduced to facilitate distributed
computation in neural networks and graphical models, allowing users to define computation at each node
and manage communication between machines. Significant speedups in training large models are achieved
by partitioning the model across multiple machines and leveraging all available CPU cores. Additionally,
two distributed optimization algorithms, Downpour SGD, and Sandblaster L-BFGS, have been presented to
parallelize computation across multiple model replicas, further enhancing the scalability and efficiency of
training large models. Downpour SGD employs asynchronous stochastic gradient descent with parameter
server shards, while Sandblaster L-BFGS distributes parameter storage and manipulation across multiple
machines. These approaches enable considerably larger models to be trained than previously reported and
significantly reduce overall training times by leveraging tens of thousands of CPU cores. The following are
the parallelization techniques that the authors elude:



Model parallelism is a technique used in distributed computing environments to train very large deep neural
network models. In this approach, the model is divided or partitioned across multiple machines or pro-
cessing units. Each machine is responsible for computing a portion of the model’s computations. The
framework automatically parallelizes computation within each machine using all available CPU cores and
manages communication, synchronization, and data transfer between machines during training and infer-
ence. By distributing the model across multiple machines, model parallelism allows for efficient utilization
of resources. It can significantly speed up the training process, particularly for large models with billions of
parameters.

Data parallelism is another technique used in distributed computing environments to train deep neural net-
work models. In data parallelism, multiple replicas of the model are created, and each replica processes a
different subset of the training data. These replicas work simultaneously to optimize a single objective. The
framework manages communication and synchronization between the replicas, allowing for efficient paral-
lelization of the training process across multiple machines or processing units. Data parallelism enables the
training of large models by distributing the workload across multiple replicas, leading to significant speed
gains compared to training on a single machine.

In this work, we show data parallelization by splitting data in a small DNN (MLP), using a simulator, and
performing experiments on training a Convolutional Neural network (CNN) in parallel using k fCV .

2 METHODOLOGY

We employ the DSMP simulator; for performing our experiments with MLP, we use text data with a 94,000
tweets dataset, and for image data, a CNN, using the MNIST dataset of handwritten numbers images con-
taining 50,000 samples. For our CNN experiments, we use the Pytorch v2.1.0 deep learning framework [2],
to program the training and perform the data distribution with weights synchronization.

Table 1: System configurations used to run the experiments.
Config. Description OS

C1 Intel Core i7-4790S CPU @ 3.20GHz, 3201 Mhz, 4 Core(s), 8 Logical
Processor(s)

Windows 10 Pro

C2 Intel Xeon Gold 5218 CPU @ 2.30GHz with 1.1TB of RAM, 64
logical cores, and 8 GPUs NVIDIA A100.

Linux Ubuntu 20.04.4 LTS

2.1 Data splitting

In data parallel training, each node trains the entire network for one epoch (one iteration) using its data.
Afterward, the gradients are averaged, and the local weights are updated before moving on to the next
epoch. The exchange of parameters is done through a parameter server or decentralized communication
mechanisms such as all-reduce [3]. For a simplified example of using data parallelization in Deep Neural
networks (DNNs), see Figure 1.



Figure 1: Data Parallelization schematic.

The data-splitting method involves independent data folds for parallel processing. For example, with a data
set split in two, we utilize 10 fCV on two separate nodes. The remaining test part’s size is arbitrary, and this
part will be tested similarly by a final model achieved when scaling up to more nodes. For each multiple-
node configuration, we report the computational speed-up and the model’s accuracy for image data.

3 SIMULATION OF SMALL DNN

We present the results of running the Twitter simulator developed in the DSMP laboratory [4]. We will focus
on MLP with more than two hidden layers as the sample of DL algorithm for running our experiments. This
simulator can parallelize data using 1,2,4 and 8 nodes.

We use this formula to calculate the performance improvement (PI) for the simulator and image data: PI =
Timing of 1 node−Timing of x nodes

Timing of 1 node ×100. It is calculated by taking the ratio of the timing result as the number of
x nodes increases compared to 1 node.

In this experiment (using configuration C1, see Table 1), first we used the Multilayer Perceptron (MLP)
with one hidden layer to train the mentioned Tweets network. This system recommends that a follower
follow the top M followers. First, we run the simulator in a simple 80-20% data split for training and testing.
In this experiment, we don’t perform 10 fCV , and, as Table 2 shows, depending on the number of nodes,
data is divided among each node. After training, by averaging the weights of each model, the final model
is tested with the 20% of original data. Two separate conclusions can be made by observing the results of
Table 2 as follows:

1. The original accuracy of building the model on one node decreases by splitting the data, which is
expected because of training with less data on each node.

2. After increasing nodes to 4 and 8 nodes, the communication time between nodes for averaging the
weights of their models dominates the parallelization speedup because of using CPU has a slow
computation performance.

To solve the first problem, we added the 10 fCV method on each node to keep the accuracy close to 33%
of one node (see Table 2). In this experiment, configuration C1 was also used. For examining the second
observation, since our simulator is limited to CPU, we removed the weight averaging part to see by using
fast computing processors such as GPUs how much of a speedup our method can produce. Conversely,
performing the same experiment to run the MLP process using 10 fCV for N = 1,2,4,8, we observed a
significant improvement of 64.85% for n = 8, vs. n = 1, shown in Table 3. For this experiment, we used
configuration C1; see Table 1.



Table 2: MLP with an 80-20% data split
N PT

(SECS.)
Accuracy

(%)
Improvement
vs. 1 Proc.

(%)
1 2,135.30 33.33 N/A
2 1,362.47 23.61 36.19
4 2,505.54 23.75 -17.34
8 4,818.00 0.15 -125.64

Table 3: MLP with 10-fold CV% data split
N PT

(SECS.)
Improvement
vs. 1 Proc.

(%)
1 9,511.66 N/A
2 9,123.58 4.08
4 8,277.06 9.28
8 2,909.78 64.85

Since we would like to show a simulation of parallelization over a DNN, we have converted the MLP into one
by adding two hidden layers to the existing one using configuration C1 (see Table 1) to do the experiments
faster. Accuracy was kept in the range of 35% for 4 nodes that were completed by this time. The current
results that we have are portrayed in the following (Table 4). We can note an increase in the processing time
as our DNN architecture has 3 hidden layers.

Table 4: DNN with an 80-20% data split
N PT

(SECS.)
Improvement
vs. 1 Proc.

(%)
1 2815.08 N/A
2 2647.11 5.97
4 4168.46 -48.08

We want to note that since our simulator runs only on CPU, which is slower than GPU, and weight adjust-
ment is a computer-demanding task, we cannot precisely predict the speedup improvement of our method
when performing GPU parallelization. However, we expect by much faster processors; this method can keep
a similar accuracy and speedup of around 60% for multiple nodes that can be different for the type of data
and NN variant.

4 EXPERIMENTS WITH CNN

In our study, we utilize 10-fold cross-validation (10 fCV ) to enhance the training and validation of deep
neural networks (DNNs) using image data, specifically the MNIST dataset. The dataset is split into 80% for
training and 20% for testing/validation. These experiments used C2 configuration (See Table 1). In Figure 2
we show our method for parallelizing k fCV .

Figure 2: K-fold cross-validation method (k = 10).

These hyperparameters were used during training: a learning rate of 0.099, batch size of 1024, and 20
epochs. The methodology demonstrates improved accuracy and processing efficiency by distributing the
training data across processors operating in parallel. This setup reduced training time and showed potential



for increased training accuracy with higher folds in cross-validation and varied processor counts, highlight-
ing the significance of parallel computation.

We hypothesize that increasing the folds in cross-validation could lead to higher training accuracy. To
examine the effect of computational resources on the network’s performance, we varied the number of
processors used in training, explicitly using n = 1,2,4,6 and 8 processors. Note that we continue to split the
dataset processing using data parallelization, and the k fCV is also parallelized for n > 2. We recorded the
training accuracy for each combination of k value and processor count detailed in tables (5 and 6).

Table 5: Training accuracies of image data in CPU
using k fCV method.

N k=2
(%)

k=4
(%)

k=6
(%)

k=8
(%)

k=10 (%)
10 fCV

1 98.39 99.28 98.71 96.83 99.57
2 97.40 97.99 97.62 95.12 98.10
4 93.57 97.76 97.39 87.59 98.19
6 91.61 97.90 97.39 95.58 98.14
8 97.11 97.63 92.31 96.12 98.04

Table 6: Training accuracies of image data in GPU
using dk fCV method.

N k=2
(%)

k=4
(%)

k=6
(%)

k=8
(%)

k=10 (%)
10 fCV

1 99.09 98.52 99.70 99.26 99.73
2 95.68 97.97 97.41 95.71 98.49
4 94.90 97.91 97.70 96.66 98.42
6 96.03 98.12 97.78 92.67 98.45
8 96.43 98.12 97.99 94.86 98.36

The results showed that k = 10 consistently achieved the highest training accuracies across all processor numbers.
Therefore, 10 fCV provided the best training accuracy for the CNN on the MNIST dataset, suggesting that a higher
number of cross-validation folds might be more effective for this task.

We have performed two more experiments. First, we run the training of the CNN for k = 10 without data splitting (see
Table 7). Afterward, we do the same, splitting the data (see Table 8); We can observe that when we split the data, there
is a small decrease in accuracy compared to not splitting.

The simulation results confirmed by this experiment that shows parallelization by data splitting can increase DNN
speedup up to 60%.

Table 7: CNN training using 10 fCV without data
splitting.

N Accuracy
(%)

PT (secs) Scalability Improvement
vs. 1 Processor (%)

1 98.63 80.90 N/A
2 97.56 82.36 -1.80
4 98.50 52.76 34.78

Table 8: CNN training using 10 fCV with data split-
ting.

N Accuracy
(%)

PT (secs) Scalability Improvement
vs. 1 Processor (%)

1 96.98 93.06 N/A
2 95.40 57.52 38.19
4 96.51 43.15 53.63

5 CONCLUSIONS

In our research, we have implemented a novel DNN simulator to examine the efficacy of parallelization by data
splitting and parallel 10-fold Cross-Validation (10 fCV ) in optimizing the training of deep learning (DL) models. The
proposed simulator is developed by considering an MLP with three hidden layers replicated on each node, and then
by communication between nodes, the simulator averages the weights and creates identical models on each node. The
simulation results indicate that for the training of small DNNs when combining parallel processing with 10 fCV and
splitting data on nodes, the improvements in training speedup while keeping similar accuracy for using DNNs on
multiple nodes can speed up the training up to 60% faster. 10 fCV is used to make each replica model more general,
which has led to significant improvements in both the efficiency of model training and the accuracy of the resultant
models. The simulation results were confirmed by the parallel running of CNN with the same strategy.

Looking ahead, we aim to broaden the scope of our investigation to include other methods for simulating paralleliza-
tions of various DNNs or machine learning methods. By doing so, we hope to uncover new insights into the scalability
and efficiency of advanced deep learning models, further contributing to the evolution of machine learning method-
ologies and their application in solving real-world challenges.



REFERENCES

[1] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Y. Ng, “Large scale distributed deep networks,” Advances in Neural Information Processing
Systems, vol. 25, pp. 1232–1240, 2012.

[2] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B. Vaughan, P. Damania et al.,
“Pytorch distributed: Experiences on accelerating data parallel training,” arXiv preprint arXiv:2006.15704,
2020.

[3] J. Keuper and F.-J. Preundt, “Distributed training of dnns,” in 2016 2nd Workshop on ML in HPC Environ-
ments. IEEE, 2016, pp. 19–26.

[4] X. (2019) DSMP Lab a Multi-agent System Simulator for Distributed Recommender System.
http://scs.ryerson.ca/ X/MAS-SIMULATOR.mp4.

[5] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning: An in-depth concurrency
analysis,” ACM Comput. Surv., vol. 52, no. 4, pp. 1–43, Aug. 2019.

[6] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B. Vaughan, P. Damania, and
S. Chintala, “PyTorch distributed: Experiences on accelerating data parallel training,” Jun. 2020.

[7] O. Schuessler and D. Loyola, “Parallel training of artificial neural networks using multithreaded and multicore
CPUs,” in Adaptive and Natural Computing Algorithms. Springer Berlin Heidelberg, 2011, pp. 70–79.

[8] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation for mapreduce,” in Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms. SIAM, 2010, pp. 938–948.

[9] M. Ali, A. Anjum, M. U. Yaseen, A. R. Zamani, D. Balouek-Thomert, O. Rana, and M. Parashar, “Edge
enhanced deep learning system for Large-Scale video stream analytics,” in 2018 IEEE 2nd International
Conference on Fog and Edge Computing (ICFEC). ieeexplore.ieee.org, May 2018, pp. 1–10.

[10] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed synchronous SGD,” Apr.
2016.

[11] Z. S. Kadhim, H. S. Abdullah, and K. I. Ghathwan, “Artificial neural network hyperparameters optimization:
A survey.” International Journal of Online & Biomedical Engineering, vol. 18, no. 15, 2022.

[12] E. Buber and D. Banu, “Performance analysis and cpu vs gpu comparison for deep learning,” in 2018 6th
International Conference on Control Engineering & Information Technology (CEIT). IEEE, 2018, pp. 1–6.

[13] C. Shallue and G. Dahl, “Measuring the limits of data parallel training for neural networks,” 2019. [Online].
Available: https://blog.research.google/2019/03/measuring-limits-of-data-parallel.html

[14] S. Pal et al., “Optimizing multi-gpu parallelization strategies for deep learn-
ing training,” DeepAI, 2019. [Online]. Available: https://deepai.org/publication/
optimizing-multi-gpu-parallelization-strategies-for-deep-learning-training

[15] A. N. Kahira et al., “An oracle for guiding large-scale model/hybrid parallel training of
convolutional neural networks,” DeepAI, 2021. [Online]. Available: https://deepai.org/publication/
an-oracle-for-guiding-large-scale-model-hybrid-parallel-training-of-convolutional-neural-networks

[16] Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten digit database,” http://yann.lecun.com/exdb/mnist/,
2010.

[17] D. Datta, D. Mittal, N. P. Mathew, and J. Sairabanu, “Comparison of performance of parallel computation of
cpu cores on cnn model,” in 2020 International Conference on Emerging Trends in Information Technology
and Engineering (ic-ETITE). IEEE, 2020, pp. 1–8.

http://scs.ryerson.ca/~aabhari/MAS_Demo_Narration.mp4
https://blog.research.google/2019/03/measuring-limits-of-data-parallel.html
https://deepai.org/publication/optimizing-multi-gpu-parallelization-strategies-for-deep-learning-training
https://deepai.org/publication/optimizing-multi-gpu-parallelization-strategies-for-deep-learning-training
https://deepai.org/publication/an-oracle-for-guiding-large-scale-model-hybrid-parallel-training-of-convolutional-neural-networks
https://deepai.org/publication/an-oracle-for-guiding-large-scale-model-hybrid-parallel-training-of-convolutional-neural-networks

