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ABSTRACT

Agent-based simulation with a synthetic population can help us compare different treatment conditions
while keeping everything else constant within the same population (i.e., as digital twins). Such population-
scale simulations require large computational power (i.e., CPU resources) to get accurate estimates for
treatment effects. We can use meta models of the simulation results to circumvent the need to simulate
every treatment condition. Selecting the best estimating model at a given sample size (number of simulation
runs) is a crucial problem. Depending on the sample size, the ability of the method to estimate accurately
can change significantly. In this paper, we discuss different methods to explore what model works best at a
specific sample size. In addition to the empirical results, we provide a mathematical analysis of the Mean
Squared Error (MSE) equation and how its components decide which model to select and why a specific
method behaves that way in a range of sample sizes. The analysis showed why the direction estimation
method is better than model-based methods in larger sample sizes and how the between-group variation and
the within-group variation affect the MSE equation.

Keywords: epidemiological models, treatment effects, model selection, regression model.

1 INTRODUCTION
Agent-based modeling (ABM) is a useful tool that helps learn epidemic dynamics. By developing a syn-
thetic population and assigning agents to households, workplaces, schools, and public transit, the epidemic
model can be more realistic [1]. For example, authors in [2] develop a large-scale simulation to study treat-
ment conditions of an Influenza outbreak across the UK and the US. The simulation was informative for
decision-makers to know the efficacy of specific policies (e.g., school closure, vaccine stockpiling, work-
place restrictions, etc.). Building on this work, a nationwide simulation is conducted to test Influenza vacci-
nation policies as shown in [3], where the model is calibrated with historical data. Scaling up the simulation
size, authors in [4] develop a simulation that can have billions of agents to simulate global-scale epidemics.
In a variation to the previous models, authors in [5] build a Markov chain Monte-Carlo simulation model
calibrated on historical data of lab-confirmed cases for H1N1 Influenza. Utilizing previous work on ABM
simulation paved the way to create a generalized population-scale simulation to study epidemic dynamics
called FRED (A Framework for Reconstructing Epidemiological Dynamics) [6]. Using FRED, the authors
in [7] create an ABM linked with an equation-based within-host model for Influenza. School closure poli-
cies were also studied during the Influenza outbreak [8]. For a different epidemic, authors in [9] study the
different vaccination policies for Measles using FRED software, this paper was pivotal in raising awareness
about the significance of vaccination and its impact on epidemic outbreaks. Outside of the commonly stud-
ied epidemics, the authors in [10] focus on cardiovascular disease and its mortality. They show the utility of
FRED for understanding disease risk and the effects of large-scale interventions [10].
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1.1 Related Work
Authors in [11] show different methods to estimate the treatment effects of Opioid Use Disorder (OUD)
interventions by allocating simulation samples to unknown treatments. Our problem is related to the ranking
and selection (R&S) problem, where the goal is to select a subset of models out of a large number of
models based on a defined performance [12]. Authors in [13] provide a review of the R&S problem in
simulation contexts. It is different from simulation optimization, where the goal is to search a parameter
space efficiently. R&S methods aim to evaluate all models from a defined set exhaustively [14]. Authors
in [15] study a variation of R&S with the optimal allocation of samples. While authors in [16] address
the problem of R&S by developing a method to exclude the inferior models from the best-selected subset
models. Their work was based on [17], where they addressed the R&S problem from the perspective of
allocation of computational budget to more critical models to increase the probability of correct selection
under a framework defined as optimal computing budget allocation (OCBA). They use mean and variance
in their allocation method, which differs from previous methods that used variance alone [18]. The goal
of OCBA is to increase the selection probability of the best method for a specific computational budget.
Authors in [19] propose a Bayesian procedure for OCBA, and [20] addresses the problem with a defined
finite-budget rule where under finite-budget simulation, the procedure will increase the sampling ratio from
less critical models and decrease the sampling ratio for more critical models.

1.2 Main Contribution
Consider that we want an accurate estimate for a specific treatment effect from a large-scale simulation.
This can not be conducted with a few simulation runs due to the randomness contained in the simulation.
And at the same time this will require an amount of computational computer (i.e., central processing unit
resources required to get an accurate estimate for the treatment effect). Therefore, we need to look for a
suitable method to estimate the treatment effect. Figure 1 explains the model selection problem, i.e., at each
sample size, what model should we use? The models shown are based on regression equations. However, it
starts from the simplest one, i.e., composed of only two covariates with intercept, to contain a quadratic term
until including a cubic term in the regression equation. The intuition behind these different models is that
the more terms, the more complex the model is to explore the model selection carefully. In addition to this,
for comparison, we include the direct-estimation method, which simply calculates the average of the current
samples as a benchmark to know when using a model becomes useless. In addition to the empirical results,
we provide a mathematical analysis to understand what are the main components behind model selection.
The result shows that while sample size is the main consideration in the choice of simple or complex models,
model selection is also affected by properties of the information environment, e.g., within-group variability
of the conditions that we are estimating, between-group variation among the mean treatment effects, and
the number of levels at which an intervention is applied. For example, model-based methods converge to
a non-zero MSE as the sample size goes to infinity due to their bias. However, MSE for the model-free
method that directly estimates the treatment effects converges to zero as the sample size goes to infinity.
Our theoretical analysis in Section 5 sheds light on this issue as n → ∞, the variance term vanishes, and the
bias term is dominant, which means that more complex models with less bias are preferred in large sample
regimes.

This paper is structured in five sections. In Section 2, we introduce the FRED software briefly and its
features. In Section 3, we discuss the different methods we will demonstrate to estimate treatment effects.
In Section 5, we provide a mathematical analysis of the behavior of two types of methods in estimating
treatment effects (model-based, using linear regression, and model-free, direct estimation). We conclude
our paper in Section 6 with concluding remarks and future directions.

2 FRED SIMULATION SOFTWARE
FRED (Framework for Reconstructing Epidemiological Dynamics) is an agent-based, open-source software
that simulates epidemics’ temporal and spatial behaviors. The Public Health Dynamics Laboratory (PHDL)
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Figure 1: Model selection in costly sample regimes. This figure shows which model will have the lowest
MSE, given the sample size. The arrow points in the direction of increasing sample size, and at each interval,
the equation specified is for the model that achieves the least MSE. Notice the increasing complexity of the
optimal model with increasing sample size. With a large enough number of samples directly estimating each
treatment condition is optimum.

at the University of Pittsburgh School of Public Health was behind the development of the FRED software.
Initially, FRED was developed to study the epidemic dynamics; however, FRED has shown the potential to
give insights into public health and intervention studies. One of the significant features of FRED is that its
synthetic population is built on the true US Census [21].

Synthetic Population: One of the key features of FRED is its synthetic population, where FRED rep-
resents every individual in every specific location explicitly. FRED makes use of the US synthetic popula-
tion from RTI International [22]. The synthetic population is assigned to specific geographically allocated
places, i.e., each resident is assigned to a specific household, students are assigned to schools, and workers
are assigned to workplaces. The specific geographic assignment for agents will also mirror the real spatial
distribution of the area and the distance traveled by the agent to their assigned place (e.g., school, workplace,
household, etc.). Each agent has its own demographic and socioeconomic information (e.g., race, age, sex,
employment, etc.) and specific locations for their business (e.g., school, workplace, household, etc.).

Discrete-time Simulation: FRED conducts discrete-time simulation with a step size of a day; each day
(i.e., simulation step), each agent can meet other agents who share the same geographic location. For
example, an agent interacts with other agents within the same household. If the agent is infected with a
disease, there is a defined probability that its relatives (i.e., household residents) will get infected by that
disease. Each infection transmission event is recorded in the software, which can be used to evaluate control
measures. Each agent has the option to change its daily activity, e.g., not to go to the workplace on a specific
day or travel from the current location.

Agent Model: Each agent has its own demographic features (e.g., age, race, sex, employment, etc.), lo-
cation for activities (e.g., school, workplace, household, neighborhood, etc.), and health-related information
(e.g., staying at home when sick, probability of getting a vaccine). In addition, FRED allows us to keep the
demographic features constant or not. For example, if the demographic features change is enabled, then the
agent’s age will change and could affect their employment and other aspects. Adult agents that reach the
working age are assigned to workplaces; similarly, children that reach school age are assigned to schools.
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Infants are assigned to the same household as their parents, and if an agent dies, it is removed from the
synthetic population. Agents have options in their health-related decisions (e.g., agents can make decisions
like taking a vaccine or not and staying home when sick or not).

Disease Model: FRED supports the spreading of one or more infectious diseases. Each disease de-
velopment is ruled by precise parameters for contact, transmission, and natural history. From an agent’s
perspective, the agent is expected to follow a model-specified path. For example, The agent will pass
through the classic Susceptible, Infected, and Recovered (S-I-R) stages where the agent will move suscepti-
ble to infection based on the transmission rate and contact rate (e.g., if the agent is within a school that has
disease-spreading agent will have a higher transmission rate compared to non-school agents). FRED speci-
fies the contact details also where the transmission rate between students will be higher than teachers, even
if the teachers were at the same school. FRED considers every contact an independent transmission oppor-
tunity (e.g., if an infected student meets the same susceptible student multiple times, each time is considered
an independent transmission opportunity). Moreover, FRED supports the spreading of multiple strains in
the same population where the intensity and trajectory of every strain is defined by the model developer.

3 MODEL SELECTION IN COSTLY SAMPLE REGIMES
Due to the randomness contained in the simulation, we can not get an accurate estimate of treatment effects
easily (i.e., small confidence interval width). Therefore, we are required to run the simulation multiple times
until we get a specified accuracy for treatment effects. In this section, we will discuss possible methods we
can use to get an accurate estimate of treatment effects.

Assume that we have L treatment conditions (e.g., from applying an intervention at L different levels),
and samples in each condition are independent and normally distributed with mean yℓ and variance σ2,
ℓ = 1, . . . ,L. We denote the i-th sample in the ℓ-th condition by yℓi, which is normally distributed random
sample, yℓi ∼ N(yℓ,σ2). Our goal is to construct estimates of the means in each treatment condition ŷℓ to
minimize the following expected squared loss:

MSE =
L

∑
ℓ=1

(ŷℓ− yℓ)2. (1)

Direct Estimation: The simplest solution to this solution uses sample means

ŷℓ =
∑

n/L
i=1 yℓi
n/L

. (2)

And achieves MSE = L2σ2/n. Here we have assumed that n simulation samples are allocated equally
across the L conditions. Samples means are unbiased and simple to estimate but the resultant MSE may not
be optimized for costly simulation regimes where n is small.

Using models to learn across treatment conditions: In a costly simulation regime where sample size
n is low, we can model the effect of treatments such that a new batch of samples for treatment effect A also
allows us to improve the accuracy of estimates for treatment effect B. The idea is that instead of focusing on
each treatment effect case by case, we can look into the adjacent treatment effects as a whole sample space.
With the help of the regression equation, the current estimate of a specific treatment effect will be updated
not only from its new sample batch but also from neighboring sample batches. This could help reduce
the required number of samples to achieve a pre-specified accuracy (e.g., achieving a specific confidence
interval (CI) width).
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Bias-Variance trade-off: Using models allows us to reduce the variability of our estimates by making
better use of the available samples across all conditions, but it comes at the cost of the increased bias
of model-based estimation. The bias-variance trade-off is one of the oldest known statistical problems
describing the trade-off between the complexity of the model and its accuracy in prediction. Consider if we
have y = f (x)+ε where E(ε) = 0 and Var(ε) = σ2

ε , define a regression fit f̂ (x) for input X = x the squared
loss can be defined as:

Error(x) = E[(y− f̂ (x))2|X = x]

= (E[ f̂ (x)]− f (x))2 +E[ f̂ (x)−E[ f̂ (x)]]2 +σ
2
ε

= Bias2 +Variance+noise. (3)

Where the first term is the bias, which measures how much the average of the estimate is different from
the true mean, the second term is the variance of the estimate, and the third term is the noise term [23].
In Section 5, we explain this trade-off for estimating the treatment effects of an intervention that can be
applied at L levels. Our results clarify the choice between directly estimating the L treatment conditions
using sample means or using a linear regression where the L conditions are modeled as L level of a factor x
that can take values xℓ = ℓ, ℓ= 1, . . . ,L. The xℓ = ℓ encoding of the levels is arbitrary and can be optimized
to improve MSE if one has some prior knowledge of the population means yℓ at each level.

4 EMPIRICAL RESULTS
OUD model: The Opioid Use Disorder (OUD) model is developed to understand the OUD epidemic
nationwide. The rise of drug overdose and opioid use disorder is a public health concern in the US currently.
The current OUD wave is part of a decades-long trend stressing the importance of studying OUD dynamics
[24]. The PHDL developed the OUD model we use in this paper at the University of Pittsburgh based on
data provided by the Centers for Disease Control and Prevention (CDC) within a sponsored project by the
CDC. The OUD model is updated monthly, where the OUD deaths are reported at specific locations (as a
more informative way for the researchers). The results used in this paper were conducted for Allegheny
County, PA.

Figure 2: State transition diagram for the OUD model.

Two interventions: Consider a problem where we have two interventions, Buprenorphine and Naloxone,
which are used to mitigate OUD harms. Buprenorphine is a medication provided for OUD patients within
treatment to move from a misuser state to a non-user. Naloxone is a medication used to reverse the effect of
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an opioid overdose (i.e., an overdose antidote). Each factor has five levels, representing the amount of the
factor (medication) available in a specific location. This will result in 25 treatment conditions (Combining
the two factors levels). We selected these two medications specifically as they are effective in the treatment
process from the OUD and reduce the number of deaths from OUD overdose. Authors in [11] show results
for model-free and model-based methods for the two-factor problem.

4.1 Comparing MSEs by varying model complexity over sample size
We have seen that model-based methods performed better than model-free methods in terms of required
simulation runs for pre-specified CI width, as shown in [11]. Consider another aspect: how will each method
perform given a specific sample size? To set up this problem, we selected a range of sample sizes starting
from 100 to 6000 simulation runs. At each sample size, we calculate the MSE value for each method to
evaluate their performance. In addition to the two regression models demonstrated [11], we explored extra
regression models to evaluate better the performance of model-based methods over different sample sizes.
Model1, model2, model3, model4, and model5 represented by equations 4, 5, 6, 7, and 8 respectively.
All these methods are defined under the category of model-based methods. For comparison, we will add a
direct-estimation method as an example of the model-free method performance. Figure 3 shows the result for
small sample sizes, and Figure 4 shows the result for large sample sizes. As we can see, at the beginning, the
model-free method was way too high than any model-based method in MSE value; however, as the sample
size grows, the model-free starts to get a lower MSE value until at 4000 sample size, where the model-free
beats the model-based methods. In the following section, we will show a mathematical explanation for the
performance of the two types of methods.

y = β0 +β1x1 (4)

y = β0 +β1x1 +β2x2 +β3x1x2 (5)

y = β0 +β1x1 +β2x2 +β3x1x2 +β4x2
1 (6)

y = β0 +β1x1 +β2x2 +β3x1x2 +β4x2
1 +β5x2

2 (7)

y = β0 +β1x1 +β2x2 +β3x1x2 +β4x2
1 +β5x2

2 +β6x3
1 (8)

5 THEORETICAL ANALYSIS
As we have seen in the previous section, in some cases, the model-based methods perform better than
the model-free ones, but as the sample size becomes very large, the model-free method becomes better in
terms of MSE. What was the reason behind that change with respect to the sample size? To evaluate the
performance of the proposed methods, we analyze and compare the MSEs for direction estimation and a
linear regression model with one factor. Consider a sample size n and L treatment conditions with mean
effects yℓ which we aim to estimate using samples yℓi, ℓ= 1,2, . . . ,L which are independently and normally
distributed with mean yℓ and variance σ2, i.e., within-group variation. We encode the L treatment groups
as L levels of a factor, xℓ, ℓ= 1,2, . . . ,L. We use the arbitrary encoding xℓ = ℓ and further associate xℓi = ℓ,
ℓ = 1,2, ..,L with the i-th observation in the ℓ-th group. Moreover x̄ = ∑

L
ℓ=1 xℓ = (L+1)/2. We define the

difference between level means yl as a between-group variation.

Theorem 1. Consider a sample size of n with L levels and assume that samples are allocated equally
across the levels (n/L samples to each level). A model-based estimate of the L treatment effects using a
linear function with least-squares fit to the observed samples ŷl = α̂ + β̂xl and xℓ = ℓ,ℓ = 1,2, . . . ,L of the
levels, gives the following MSE:
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Figure 3: The MSE values for different models compared to sample sizes of 100, 200, 300, and 400,
respectively, where it shows that simpler model-based methods are better than higher terms model-based
methods and model-free methods.

MSE =
Lσ2

n

(
2(1/3L2 +1/2L+1/6)

(1/12)(L2 −1)
+1
)
+

(2L2 +3L+1)
6L

(
∑

L
ℓ=1(ℓ−

(L+1)
2 )(yℓ− ȳ)

(1/12)(L2 −1)

)2

.

Where the MSE of the model-based method depends on the within-group variation and between-group vari-
ation.

Theorem 1 shows that the model-based method MSE is comprised of three components: the within-group
variation, the between-group variation, and the number of levels. As within-group variation σ2 increases, the
ability of the model-based method to estimate the true level mean yl becomes worse. Similarly, as between-

group variation ρ2 =

(
∑

L
ℓ=1(ℓ−

(L+1)
2 )(yℓ−ȳ)

(1/12)(L2−1)

)2

increases, this would affect the performance of the model-based

method badly. In addition, the number of levels L affects the value of MSE equation for the model-based
method as it appears on each term of the equation. In contrast, for the case of the model-free method, its
MSE depends only on the within-group variation σ2 and the number of levels L.
This could explain why the model-free method, after a specific sample size (in Figure 4), its MSE becomes
better than model-based methods. This shows that the performance of the model-based method is tied to
within-group variation and between-group variation parts mainly.

Consider the critical sample size at which MSE for direct estimation, MSE = L2σ2/n equals the MSE for
regression-based estimates derived in Theorem 1:

n⋆ = σ
2
(

L−1− 2(1/3L2 +1/2L+1/6)
(1/12)(L2 −1)

)
6L2

2L2 +3L+1
ρ
−2. (9)

This sample size establishes the critical region above which direct estimation outperforms the regression-
based estimates; therefore, when the sample size is smaller than n∗, then it is beneficial to use the model-
based method, while if the sample size is greater than n∗, then it is beneficial to directly estimate the treat-
ment effects. Similar to Theorem 1, n⋆ is dependent on the same factors of the information: it is increasing
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Figure 4: The MSE values for different models compared to sample sizes from 500 to 6000 where it shows
that model-based methods perform well until a specific sample size that the model-free method supersedes
in performance.

in within-group variation σ2 and the number of levels (L), and decreases with increasing between-group
variation ρ2.

6 CONCLUSION
Estimating treatment effects in a large-scale simulation is a computationally exhaustive task. The straightfor-
ward method of brute force can be applied in small-size simulations but does not apply to larger simulation
models. Therefore, we explored model-based methods showing different regression models and their per-
formance compared to the model-free method. We demonstrated the methods’ performance given different
sample sizes to provide more analysis for our approach. Furthermore, we provided a mathematical analy-
sis to explain why model-free is better than model-based in larger sample sizes. The analysis shows that
the MSE equation for the model-based method depends on the between-group variation and within-group
variation, which explains why model-based methods perform better at specific sample sizes than model-free
methods in terms of MSE and vice versa.
This work can be extended by changing the labeling method; in this paper, we defined the levels as
1,2,3, ...,L, and we got ρ2 as the weighted sum for between-group variation. However, defining the levels
more wisely will get us an unweighted sum of between-group variation. Moreover, the extension can be
done by exploring estimation methods that can reach better bias-variance trade-off, in addition, incorporat-
ing spatial data could help in understanding better the OUD model dynamics (e.g., the Gaussian process
showed potential in learning epidemic dynamics with spatial data [25]). Specifically, integrating spatial data
could help the model in learning the socio-economic details, which, in turn, gives a more accurate estimate
of the treatment effect. We intend to explore this path as a future research direction.

DATA AND CODE

For reproducibility, we supported our study with code (https://github.com/abdulrahmanfci/model-selection).
However, we are not able to share detailed data about the OUD model for contractual reasons.
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Figure 5: The main components that decide the MSE equation and affect the choice of a model. This figure
shows the main variables that comprise the MSE value. The first one, ρ2, is the between-group variation where its
increase will affect the bias part of the MSE equation for the model-based method. The second variable (in clockwise
order) L is the number of levels, though, in this problem, we defined a fixed number of levels, but the idea generalized
as L→∞ and Equation (9) for n⋆ is increasing in L for large L. In those regimes, we prefer to use model-based methods
over a broader range because the within-group variability term dominates the MSE equation as L →∞. The third factor
affecting our model selection is σ2 or within-group variability; with increasing σ2, we prefer to use more and more
complex models to minimize MSE. Lastly, n is the sample size which is the most critical factor in optimizing model
selection (Figure 1). As n → ∞, the variance terms go to zero, and the bias part in the model-based MSE equation
becomes dominant, at which point direct estimation is preferred (there are no advantages in the use of models in large
sample regimes).
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A PROOF OF THEOREM 1

A.1 MSE in the model-based case

Consider a problem with a sample size of n and a number of levels L where levels are 1,2,3, ...,L. Each
level has an equal amount of samples (i.e., n/L), and all levels have the same variance (homoscedasticity).
A model-based method is given as ŷℓ = α̂ + β̂xℓ to estimate the true yℓ where yℓ is the average of yℓi at level

ℓ, also ¯̄y = 1
n ∑

L
ℓ=1 ∑

n/L
i=1 yℓi, ȳ = 1

L ∑
L
ℓ=1 yℓ and α̂ = ¯̄y− β̂ x̄ and β̂ = ∑

L
ℓ=1 ∑

n/L
i=1(xℓi−x̄)(yℓi−ȳ)

∑
L
ℓ=1 ∑

n
i=1(xℓi−x̄)2 . The α̂ and β̂ are

defined using the least-squares fitting equation.
The mean squared error (MSE) for the model-free method is defined as:

MSE = E[
L

∑
ℓ=1

(ŷℓ− yℓ)2]. (10)
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where ŷℓ is the estimator for the true yℓ and yℓ is the true mean for yℓi values (i.e., death estimates at level l).
The MSE term can be expanded as follows:

MSE = E[
L

∑
ℓ=1

(ŷℓ− yℓ)2] = E[
L

∑
l=1

(ŷℓ−E[ŷℓ]+E[ŷℓ]− yℓ)2]

= E[
L

∑
ℓ=1

((ŷℓ−E[ŷℓ])2 +2(ŷℓ−E[ŷℓ])(E[ŷℓ]− yℓ)+(E[ŷℓ]− yℓ)2)]

=
L

∑
ℓ=1

(E[ŷℓ2]−E[ŷℓ]2)︸ ︷︷ ︸
variance

+
L

∑
l=1

(E[ŷℓ]− yℓ)2

︸ ︷︷ ︸
bias

(by linearity of expectations)

Working on the variance term

L

∑
ℓ=1

(E[ŷℓ2]−E[ŷℓ]2) =
L

∑
ℓ=1

(Var(α̂)+ x2
ℓ(Var(β̂ )))

=
L

∑
ℓ=1

Var( ¯̄y)︸ ︷︷ ︸
=σ2/n

−2x̄ Cov( ¯̄y, β̂ )+(x2
ℓ + x̄2)Var

(
∑

L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)(yℓi − ȳ)

∑
L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2

)

Working on the second term

Cov( ¯̄y, β̂ ) = Cov

1
L

L
n

L

∑
ℓ=1

n/L

∑
i=1

yℓi,
∑

L
ℓ=1 ∑

n/L
j=1(xℓ j − x̄)(yℓ j − ȳ)

∑
L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2



=

L

∑
ℓ=1

n/L

∑
i=1

n/L

∑
j=1

(xℓ j − x̄)Cov
(
yℓi,yℓ j

)
n

L

∑
ℓ=1

n/L

∑
i=1

(xℓi − x̄)2

= 0 (
L

∑
ℓ=1

n/L

∑
j=1

(xℓ j − x̄) = 0 & Cov(yℓi,yℓ j) = σ21i= j)

Working on the third term

(x2
ℓ + x̄2)Var

(
∑

L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)(yℓi − ȳ)

∑
L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2

)
= (x2

ℓ + x̄2)
∑

L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2Var(yℓi)

[∑L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2]2

= (x2
ℓ + x̄2)

σ2

∑
L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2

L

∑
ℓ=1

(E[ŷℓ2]−E[ŷℓ]2) =
L

∑
ℓ=1

σ2

n
+(x2

ℓ + x̄2)
σ2

∑
L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2

(Putting the two terms together)

=
L

∑
ℓ=1

σ2

n ∑
L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2

(
L

∑
ℓ=1

n/L

∑
i=1

(xℓi − x̄)2 +n(x2
ℓ + x̄2)

)

=
L

∑
ℓ=1

σ2(∑L
ℓ=1 ∑

n/L
i=1 x2

ℓi +nx2
ℓ)

n ∑
L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2
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To simplify the variance term

=
σ2

n

L

∑
ℓ=1

(∑L
ℓ=1 ∑

n/L
i=1 x2

ℓi +nx2
ℓ)

∑
L
ℓ=1 ∑

n/L
i=1(xℓi − x̄)2

=
σ2

n

L

∑
ℓ=1

n/L(L(L+1)(2L+1)/6)+nx2
ℓ

∑
L
ℓ=1 ∑

n/L
i=1 x2

ℓi −nx̄2

=
σ2

n

L

∑
ℓ=1

n/L(L(L+1)(2L+1)/6)+nx2
ℓ

n/L(L(L+1)(2L+1)/6)−n L2

4

=
σ2

n
∑

L
ℓ=1(1/3L2 +1/2L+1/6+ x2

ℓ)

7/12L2 +1/2L+1/6

=
σ2

n
2L(1/3L2 +1/2L+1/6)

7/12L2 +1/2L+1/6

Simplifying the bias term in the MSE expansion:

L

∑
ℓ=1

(E[ŷℓ]− yℓ)2 =
L

∑
ℓ=1

(E[ŷℓ]2 −2E[ŷℓ]yℓ+ y2
ℓ)

=
L

∑
ℓ=1

E[ ¯̄y]2 −2E[ ¯̄y]E[β̂ ]x̄+E[β̂ ]2x̄2 +2E[ ¯̄y]E[β̂ ]xℓ

−2E[β̂ ]2x̄xℓ+E[β̂ ]2x2
ℓ −2E[ ¯̄y]E[yℓ]+2E[β̂ ]x̄E[yℓ]−2E[β̂ ]xℓE[yℓ]+E[y2

ℓ ]

Substituting x̄ = (L+1)/2

=
L

∑
ℓ=1

E[ ¯̄y]2 − (L+1)E[ ¯̄y]E[β̂ ]+
(L+1)2

2
E[β̂ ]2 +2E[ ¯̄y]E[β̂ ]xℓ

− (L+1)E[β̂ ]2xℓ+E[β̂ ]2x2
ℓ −2E[ ¯̄y]E[yℓ]+ (L+1)E[β̂ ]E[yℓ]−2E[β̂ ]xℓE[yℓ]+E[y2

ℓ ]

=
Lσ2

n
+

(2L2 +3L+1)
6

(
∑

L
ℓ=1(ℓ−

(L+1)
2 )(yℓ− ȳ)

(1/12)(L2 −1)

)2

A.2 MSE in the model-free case

Consider a problem with a sample size of n and a number of levels L where each level has an equal amount of
samples (i.e., n/L), and all levels have the same variance (homoscedasticity). Similarly, The mean squared
error (MSE) for the model-free method is defined as:

MSE = E[
L

∑
ℓ=1

(ŷℓ− yℓ)2].

Where ŷℓ is the estimator for the true yℓ and yℓ is the true mean for yℓi values (i.e., death estimates at level
ℓ).

MSE =
L

∑
ℓ=1

(E[(ŷℓ−E[ŷℓ])2]︸ ︷︷ ︸
variance

+E[(E[ŷℓ]− yℓ)2]︸ ︷︷ ︸
bias=0

) model-free (direct) estimation E[ŷℓ] = yℓ

=
L

∑
ℓ=1

(E[ŷℓ2]−E[ŷℓ]2) =
L

∑
ℓ=1

(E[L/n(
n/L

∑
i=1

yℓi)2]−E[ŷℓ]2)

=
L

∑
ℓ=1

((L/n)2(n/L(y2
ℓ +σ

2)+n/L(n/L−1)y2
ℓ)− y2

ℓ) =
L2σ2

n
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