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ABSTRACT 
This study investigates the comparative effectiveness of long-term versus short-term decision-making 
strategies in human resources management within the agri-food supply chain, focusing specifically on 
blueberry harvesting in BC, Canada. We apply a Deep Reinforcement Learning (DRL) model to assess 
the performance over a long-time versus short-term planning horizon of decision-making strategies in 
the context of sustainable blueberry harvesting. We consider the economic and social dimensions of 
sustainability to evaluate the quality of the decisions made by the farmer agent. The economic farmer 
agent aims to maximize profitability through increased harvesting productivity, while the social farmer 
agent seeks to create jobs and reduce job turnover. We model the problem as a sequential dynamic 
decision problem and apply DRL to train farmer agents with different decision-making personas. The 
results suggest that not only does the long-term strategy yield greater profitability for farmers, but it also 
leads to improved social performance. 
Keywords: supply chain management, agri-food industry, deep reinforcement learning. 

1 INTRODUCTION 
In the face of ever-evolving challenges, the agricultural industry remains at the forefront of sustaining 
global food security and economic stability. Despite significant advancements in productivity and 
technological innovations, this sector grapples with a myriad of obstacles that threaten the integrity of 
agri-food supply chains and jeopardize the efficacy of food security programs [1]. Among these 
challenges, climate change emerges as a critical exacerbating factor, contributing to the destabilization 
of climate conditions and highlighting the imperative for implementing robust sustainability measures 
within agriculture [2]. The increasing concentrations of greenhouse gases are a principal driver of climate 
instability, emphasizing the need for the sector to adapt through sustainable practices in the face of varied 
climate change scenarios [3]. 
The decision-making processes within the agri-food supply chain are significantly influenced by the 
perception of climate variability elements, namely rainfall, temperature, and sunshine. However, a 
pronounced gap exists between the farmers’ perceptions of climate variability and the empirical data 
provided by scientific research, spotlighting the crucial role of aligning short-term and long-term Human 
Resource Management (HRM) strategies to bridge this divide [4]. Developing a cohesive understanding 
of these strategies, including integrating sustainability objectives, is paramount in fostering stakeholder 
consensus toward achieving sustainable yield production that meets consumer demand. Despite the 
acknowledged impact of climate change on the severity and patterns of extreme weather events [5], more 
research is still needed to investigate the broader implications of climate variability on food availability, 
particularly at national and regional scales [6]. This gap underscores the urgency of exploring sustainable 
agricultural practices that can withstand the challenges posed by climate change, ensuring the resilience 
of food supply chains against the backdrop of global environmental shifts. 
This paper addresses these complex challenges by adopting a holistic view of sustainability within the 
agricultural sector, guided by the Triple Bottom Line (TBL) approach that balances environmental, 
economic, and social goals [7]. By focusing on sustainable HRM strategies and the potential of novel 
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decision-making methodologies like Deep Reinforcement Learning (DRL), this study aims to enhance 
traditional agricultural practices and decision-making processes. Through comprehensive analyses and 
the exploration of multiple scenarios, the paper offers actionable insights and practical solutions to 
optimize agricultural efficiency, support the sustainability of the agri-food supply chain, and improve 
informed decision-making within the industry. 
The paper is organized as follows: Section 2 reviews relevant literature and goals. Section 3 outlines the 
problem area. Section 4 explains the model and algorithm. Section 5 shares results. Finally, Section 6 
concludes with implications and future research directions. 

2 LITERATURE REVIEW 
The scientific consensus is that greenhouse gases significantly impact climate and agriculture, potentially 
reducing crop yields. The IPCC stresses the need for changes in farming and land use to adapt to shifting 
climate patterns, such as temperature and rainfall. The complexity of climate’s effects on crops 
complicates understanding and adapting to these changes [8]. 
Studying climate change’s impact on the agri-food supply chain requires analyzing climate indicators to 
produce realistic forecasts. Acknowledging climate change’s importance, understanding future scenarios 
is essential for stakeholders like suppliers, farmers, buyers, end-users, and policymakers [9]. This 
highlights the importance of accurate decision-making in agriculture. Reliable forecasts can strengthen 
the agri-food supply chain, improve food security through strategic imports and exports, and help farmers 
make informed financial and operational choices based on climate projections [10]. Getting accurate crop 
yield forecasts is tough but vital for agri-food chain goals. Sustainability, especially in the food sector 
facing complex social and environmental issues, has become crucial. With growing public interest, more 
companies are embedding sustainability into their strategies [11]. 
Sustainability means meeting current needs without compromising future generations’ ability to meet 
theirs, encompassing social, environmental, and economic responsibilities. The TBL framework, which 
balances these objectives, is widely used by companies to assess their supply chain performance [12]. 
Meeting the TBL for sustainability is challenging for decision-makers due to unpredictable factors like 
yield expectations, lack of transparency, and the complexity of socioeconomic systems, leading to 
uncertainty. Environmental issues, often without clear scientific explanations, add to these complications 
[13]. 
Researchers suggest viewing decisions as parts of complex, adaptive systems to manage challenges 
effectively. With the rise in supply chain disruptions affecting various aspects, enhancing resilience is 
now a top priority. A study shows 80% of decision-makers emphasize resilience to mitigate unforeseen 
events, indicating a move towards developing stronger coping mechanisms [14, 15]. Our research 
emphasizes the crucial role of HRM in aligning recruitment with corporate strategies, values, and labor 
market conditions. It shows that successful recruitment involves not just attracting talent but also 
integrating them into company culture and enhancing their performance. Choosing between external 
hires and internal promotions is key to recruitment strategies. Moreover, high turnover can impact skill 
consistency and customer service, highlighting the need for continuous training for new hires [16]. For 
lasting success, companies should focus on identifying potential leaders from new hires, aligning 
recruitment with organizational objectives. This approach, supported by leadership and motivation 
research, is crucial for sustainable growth [17]. 
This study contributes significantly to agricultural science by integrating DRL into existing frameworks, 
thus refining, and enhancing traditional methodologies. By applying DRL, we achieve a nuanced and 
dynamic evaluation of decision-making strategies, enabling a comprehensive assessment of their 
performance across various scenarios. This sophisticated analysis equips decision-makers with essential 
insights into the adaptability of strategies, supporting more informed and strategic agricultural planning. 
Moreover, transcending theoretical discourse, the research delivers actionable outcomes through detailed 
scenario analysis, offering indispensable resources to stakeholders in agriculture and decision science. 
The findings validate the models and strategies developed, providing pragmatic guidance to enhance 
decision-making processes, optimize agricultural practices, and ensure the sustainability of agri-food 
supply chains. 
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3 MODELING AND SIMULATION 
This study analyzes sustainable HRM strategies in British Columbia’s blueberry supply chain during 
harvest season. It aims to evaluate the short and long-term impacts of labor hiring choices, such as 
whether to hire seasonally or establish ongoing contracts. The decisions farmers face regarding 
agricultural labor has significant economic, social, and environmental ramifications. The study focuses 
on a blueberry farm divided into blocks, each with unique factors affecting HRM strategy. 
The problem statement includes the evaluation of different decision-making strategies over multiple 
years, focusing on their cumulative impact on sustainability. As shown in Figure 1, each decision-making 
juncture (St, where t ranges from 1 to Tn, Tn representing the entire harvesting season in year n over a 
planning horizon of N years) presents the farmer with a complex array of choices regarding the optimal 
composition of the labour force, contingent upon expected yield outcomes and broader sustainability 
objectives. The repercussions of these decisions, encapsulated within a reward framework comprising 
financial and non-financial value functions (e.g., profit, social well-being), serve as the precursors for 
subsequent strategic adjustments (St+1). 

 
Figure 1: Farmer’s action and learning process; (a) one state, (b) multiple states in one year and multiple years. 

Amplifying the complexity of this decision-making problem is the categorization of labour into three skill 
levels, beginner (k=1), intermediate (k=2), and advanced (k=3), each associated with distinct productivity 
and quality impacts on the harvesting process. The selection of labour, hence, not only influences the 
immediate yield quantity and quality but also reflects the farm’s commitment to sustainable practices and 
social responsibility. This intricate decision network, underscored by fluctuating market conditions, 
environmental variability, and socio-economic considerations, necessitates an analytical framework 
capable of processing high-dimensional data and adapting to dynamic changes. 
The planning time horizon N considered in study is 20 years during which a farmer makes strategic human 
resource management decisions on a yearly basis for blueberry farming. The 20-year period differentiates 
short-term decisions, which prioritize immediate gains, from long-term planning that focuses on 
cumulative impacts, sustainability, and strategic investments for lasting success and maximized returns 
over two decades. Given the dynamic, complex, and multi-objective nature of sustainable HRM in 
agriculture, traditional Deep Learning (DL) and Modeling and simulation (M&S) approaches exhibit 
certain limitations. While proficient in identifying patterns within large datasets, DL models need more 
temporal depth and decision-sequential understanding, which are required for the iterative decision-making 
processes characteristic of HRM strategies. Conversely, M&S approaches, although valuable for 
hypothesis testing and scenario exploration, may not adequately capture the real-time dynamism and 
unpredictability inherent in agricultural environments. DRL, based on iterative learning and decision-
making from environmental interactions, emerges as a methodologically superior choice for this study. 
DRL’s capacity to navigate complex decision-making processes, adaptability, and continuous learning 
capabilities align perfectly with sustainable HRM requirements in agriculture [18, 19]. Moreover, DRL’s 
proficiency in handling multi-objective optimization and high-dimensional state spaces [20, 21] supports 
its application in balancing sustainability’s economic, social, and environmental dimensions in labour 
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hiring practices. DRL’s practical relevance and adaptability to agricultural settings further justify its 
selection, promising actionable insights, and strategies for sustainable HRM. In addition, DRL integrates 
deep learning with reinforcement learning, enabling the handling of large state and action spaces that would 
otherwise be intractable with conventional RL techniques. This capability is crucial in sustainable HRM 
problems, where the decision space encompasses a wide range of variables including crop yields, labor 
skill levels, and market prices. For example, in this study we consider 2!" possible actions at each state, 
and 2!"#$ potential policy paths. The deep learning component of DRL allows for the extraction of high-
level feature representations from raw data, making it possible to discern intricate patterns and relationships 
that inform more strategic and effective decision-making. 
State representation: The state space consists of all possible states, i.e. 𝒟, during harvesting, characterized 
by four inputs at time step t. In this study, a state at time step t is represented by a vector 𝑆% =
&𝑦(% , 𝑝(% , 𝑤&% , 𝑎&%- ∈ 𝒟. In this vector, 𝑦(% represents the expected yield at time t, 𝑝(%	represents the expected 
price at time t, 𝑤&% refers to the skill levels of laborers at time t, which are randomly defined at the beginning 
of harvesting and may improve if a worker is selected for training, and 𝑎&% is a binary variable that determines 
a laborer’s availability at time t.  
Action space: The action space, i.e. 𝒜, comprises all potential decision-actions a farmer might take at each 
time step t. The decision at time step t is defined as a vector �⃗�% = &𝑥&%- ∈ 𝒜, where 𝑥&% is a binary variable 
and becomes 1 if worker i is hired and otherwise 0.  
Learning and forgetting functions: Workers are categorized into beginner, intermediate, and advanced 
skill levels, with wages and efficiency varying accordingly. Higher-skilled workers earn more and deliver 
better quality work. Skill improvement over time is possible through learning, while a fairness mechanism, 
the forgetting function, may affect hiring choices [22, 23]. The functions for learning and forgetting, 
represented by (1), are applied to each worker yearly, with 𝐿𝑖𝑡 and 𝐹𝑖𝑡 respectively. 

!
𝐿!" = 𝛽 − 𝛽𝑒#$!"."	
𝐹!" = 𝑒#&!

"."											
		 𝑖𝑓𝑥!

" = 1,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (1) 

The rates of learning and forgetting for worker i at time t are defined as 𝜆&% and 𝛾&% respectively. Additionally, 
𝛽 represents the maximum potential improvement in a worker’s skill, calculated by subtracting the previous 
skill level from the highest attainable skill level, which is 1. Accordingly, the worker’s current skill, i.e. 
𝜃(𝑥&%), gets updated based on potential skill, learning from work experience (i.e. 𝜃(𝑥!") = 𝜃(𝑥!"#') + 𝐿!"#') 
and the impact of time away from work for each period (i.e. 𝜃(𝑥!") = 𝜃(𝑥!"#') − 𝐹!"#').  

3.1 Economic Model 
To calculate the economic reward function, the farmer evaluates revenue, labor costs, and missed 
opportunities to maximize profits from selling harvested blueberries. This consideration not only aims at 
optimizing worker wages and mitigating potential yield losses but also supports environmental objectives. 
The profit function, as detailed in (2), Emphasizes the critical need to minimize product waste through the 
reduction of missed opportunities, thereby integrating environmental considerations into this function. 

𝛱" = :𝑝;𝑡. ℎ"< − :𝑋	>>>⃗ " .𝑊>>>⃗ "< − :𝑝;𝑡. (𝑦;𝑡 − ℎ")<, (2) 
s.t. ℎ𝑡 ≤ 𝑦(%			∀𝑡,  

where, 𝑝(% represents the price at time t, ℎ% denotes the quantity of harvested blueberries at time t, where 
ℎ" = :∑ 𝑥!"! . 𝜃(𝑥𝑖𝑡)< ×	(Highest Harvest), where the highest harvest is calculated based on the maximum 
harvested value by advanced labor with 𝜃(𝑥!") = 1. Also, 𝑦(% determines the total possible harvested 
blueberry at time t, and �⃗�% and 𝑊???⃗ % are vectors of worker 𝑥&% relative to their corresponding wage 𝑤&%. 
Besides, (3) determines the normalized economic reward function in farming, calculated as the ratio of profit 
to income.  In the economic function, the first term calculates the total revenue earned from selling 
harvested blueberries at a specific price. The second term measures the wages paid to workers based on 
their skill levels. Using the third term, lost opportunities are determined by calculating the difference 
between the actual yield and the harvested blueberries; this value shows how many crops could have been 
harvested during the period.  
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𝐸𝑅" =
𝛱"

𝑝;𝑡.𝑦;𝑡
	. 

(3) 

3.2 Social Model 
Furthermore, the farmer places a high priority on social responsibilities, focusing on boosting job creation 
and reducing turnover. This approach includes retaining existing teams for subsequent periods or hiring 
new labor only as needed. (4) and (5) quantify social activity values, assessing job creation and turnover, 
respectively. (4) yields a normalized value for job creation, considering the total pool of available workers, 
while (5) calculates the normalized value of turnover by comparing it with the figures from the previous 
time step.   

𝑆𝑅1" =
𝐶𝑎𝑟𝑑:𝑋	>>>⃗ "J𝑥!" = 1<

∑ 𝑎!"!
; 

(4) 

𝑆𝑅2" =
∑ 𝑎!"! − J𝑋	>>>⃗ ")' − 𝑋	>>>⃗ "J

∑ 𝑎!"!
	. 

(5) 

Therefore, (6) defines the social reward function, indicating that the ideal values for (4) and (5) are 1, 
signifying maximum job creation and minimum turnover. Consequently, a multiplication operator is 
employed to compute the final value. To put it simply, we want to create more jobs and keep turnover low 
at the same time. Indeed, outcomes that either yield low job creation coupled with low turnover, or high job 
creation with high turnover, are deemed unsatisfactory. Therefore, employing multiplication as a strategy 
effectively addresses this challenge, ensuring both objectives are met concurrently. 

 

𝑆𝑅" = 𝑆𝑅1" × 𝑆𝑅2". (6) 
  

3.3 Total Utility 
We utilize Multi-Attribute Utility Theory (MAUT), as outlined by [24] and represented in (7), for the 
aggregation of utilities. The elasticity coefficients are derived using elicitation techniques, which involve 
the comparative evaluation of payoff lotteries, as described by [17]. This method provides the versatility to 
examine various scenarios, spanning from purely economic to entirely social perspectives, by adjusting the 
weights of each objective, with the condition that 𝜇) + 𝜇* = 1, where 𝜇) and 𝜇+ show the weight of 
economic and social objectives, respectively. This allows for a comprehensive comparison of outcomes and 
the extraction of pertinent managerial insights. 

𝑈(𝑅") = 𝜇* . 𝑈(𝐸𝑅") + 𝜇+. 𝑈(𝑆𝑅"). (7) 
To ensure a comparative analysis between short-term and long-term strategies, we will employ the 
Maskable PPO algorithm, adjusting the discount factor accordingly. This algorithm enhances performance 
by masking invalid actions in each state, preventing their selection by the agent. For short-term focus, we 
will set the discount factor 𝜆 to approximately 0, directing the agent to prioritize immediate rewards. 
Conversely, for the long-term approach, 𝜆 will be set to approximately 1, encouraging the agent to weigh 
long-term consequences more greatly. We assume the agent’s state encompasses expected yield, expected 
price, individual worker skill levels, and laborer availability. The action involves selecting whom to hire, 
i.e. 0 (not hire) or 1 (hire), from a pool of workers, naturally excluding those who are unavailable. The 
reward is derived from the utility function 𝑈(𝑅%), representing the utility of rewards at time 𝑡. We utilize a 
specialized DRL algorithm for blueberry farming HRM, detailed in Algorithm 1 (see Appendix A), 
considering yield, price, farmer preferences, and initializing policy and value functions. This algorithm 
simulates farm operations, updating worker attributes and making hiring decisions based on current 
conditions. It evaluates economic and social outcomes to balance profit and social responsibility. Through 
iterations, it learns an optimized HR policy considering economic, social, and time goals. We assess strategy 
effectiveness by comparing trained agents across time horizons and farmer personas. 

4 RESULTS 
In this study, we leveraged the StableBaselines3-Contrib package, a sophisticated tool in Python designed 
for training Reinforcement Learning (RL) models. This choice was driven by its comprehensive suite of 
algorithms and compatibility with complex simulation environments. Our computational setup comprised 
a high-performance computing system equipped with a 13th Generation Intel® Core™ i9-13900HX 
processor, boasting a base operating frequency of 2.20 GHz and augmented by 32.0 GB of RAM. This 
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powerful hardware configuration facilitated the intensive computational demands of our RL models. The 
training process for each environment and agent was conducted extensively, lasting approximately one day 
per session, utilizing 1 million timesteps. This rigorous training regimen was necessary to ensure that our 
models could accurately learn and adapt to the complex dynamics of agricultural decision-making in the 
context provided. 
Our case study imagines a farmer managing a 30-acre blueberry farm in British Columbia over 20 years. 
With 15 workers annually, each with varying availability and skills, the farmer aims to optimize 
productivity and profitability. Data on production, farm value, and worker wages in British Columbia 
(statcan.gc.ca) inform decision-making (see Table A). Through computational experiments, we assess the 
effectiveness of RL techniques in agricultural management for more sustainable practices. We created 
farmer personas based on economic and social priorities and short or long-term planning. Short-Term (ST) 
personas prioritize immediate financial returns, often at the cost of long-term sustainability and social 
welfare. In contrast, Long-Term (LT) personas focus on adopting practices that ensure the farm’s long-term 
viability, emphasizing sustainability and broader social benefits. With a preference for economic outcomes, 
Economically Centered (EC) personas strive for a 0.75 to 0.25 economic-to-social objective ratio, aiming 
to maximize financial returns potentially at the expense of social endeavours. Socially Oriented (SO) 
personas, however, prioritize social goals over pure economic gain, operating with a 0.75 to 0.25 social-to-
economic ratio. Our experiments, outlined in Table 1, highlight the advantages of long-term farming 
strategies over short-term ones. Long-term planning leads to higher profits, better turnover rates, improved 
workforce management, and stable operations. These benefits optimize resource use and maintain 
efficiency over time, fostering sustainable practices and economies of scale for better returns on investment. 
A stable workforce is crucial for long-term success, promoting skill development, loyalty, and a positive 
work environment. By prioritizing workforce stability, farms reduce recruitment costs and cultivate a 
motivated team, boosting operational efficiency. Investing in human capital through continuous learning 
sustains long-term strategies, enhancing competitiveness and adaptability to market changes. Long-term 
planning creates sustainable job opportunities, reducing the need for frequent hiring and training. 
Comparing short-term and long-term strategies for EC and SO personas, long-term planning significantly 
reduces turnover by over 80% and boosts profits by at least 90%. While short-term planning may create 
more jobs initially, it falls short of meeting socially responsible objectives, highlighting the importance of 
long-term strategic planning in balancing financial success and social responsibility in agriculture. SO 
personas experience slightly higher turnover rates due to their strategy of hiring all available labor, 
increasing the risk of unavailability in subsequent periods.  

Table 1: Pareto results of economic and social objectives from 1,000 simulations. 
Planning Horizon Persona Job Creation Turnover Profit 
  Avg. Std. Avg. Std. Avg. Std. 

Short-term SO 161 12.56 126 10.45 198,705.19 173,263.30 
EC 127 9.18 102 9.47 369,233.95 74,055.36 

Long-term SO 156 8.78 22 4.7 489,444.49 17,4124.70 
EC 119 8.37 17 4.35 702,756.09 71,734.26 

5 CONCLUSIONS 
This study highlighted the effectiveness of DRL in assessing the relative benefits of long-term versus 
short-term decision-making strategies in the agri-food supply chain, focusing particularly on blueberry 
harvesting in British Columbia, Canada. Through detailed comparative analysis, the superiority of long-
term strategies became apparent, showcasing their ability to not only increase profitability for farmers but 
also foster better social outcomes. By dividing sustainable decisions into economic and social dimensions, 
this research emphasized the necessity of aligning profit with social benefits, such as job creation and 
turnover reduction, within the agricultural sector. DRL’s application enabled an in-depth examination of 
sustainable decision-making, with implications reaching beyond to the wider agri-food supply chain. In 
essence, the findings strongly support the preference for long-term strategies over short-term ones, 
underlining their advantage in terms of both profitability and social impact. This confirmation of DRL’s 
utility in strategic agricultural decision-making highlights the critical need for adopting long-term 

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210036401
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approaches to ensure sustainable agricultural practices and societal welfare. 

A APPENDICES 
The pseudocode for the algorithm is as follows. 

ALGORITHM 1: DEEP REINFORCEMENT LEARNING OF HUMAN RESOURCE MANAGEMENT. 
 Input: Blueberry yield, Blueberry price, Farmer’s economically driven weight, Farmer’s social responsibility 

weight, Farmer’s decision-making time horizon 
 Output: Learned policy 𝜋 
1 Initialize policy parameters 𝜃 
2 Initialize value function parameters 𝜙 
3 For iteration = 1, 2, … Number of Training; do 
4  Initialize Worker’s availability, Worker’s skill, Worker’s wage 
5  While not done 
6   Observe the current state 
7   Select an action on the current policy which is a vector of binary variables showing whom to hire for 

the current year (1 is hire) 
8   Execute the action in the environment 
9   Calculate the economic and social rewards 
10   Calculate the best (Max) and worst (Min) possible economic and social rewards 
11   Normalize economic and social rewards 
12   Calculate utility function 
13   Update each worker’s skill based on the learning and forgetting function 
14   Update each worker’s wage based on their skill 
15   Observe the next state and whether the episode is done 
16   Store the transition 
17  end 
18  Update the policy and value networks 
19 end 

The inputs used in the DRL training are presented in Table A as follows. 
Table A: Dataset. 

Parameter Value 
Total timestep and Farm’s area 20 years & 30 acres 
Highest harvest 1,5246 kg/harvesting season 
Number of workers in the pool 15 workers 
[Advance; Intermediate; Beginner] wages [22,500; 13,500; 9,000] $/year 
Hiring cost 5,000 $/worker 
Learning and Forgetting rates 𝑁(0.1, 0.05); 	𝑁(0.05, 0.025) 
Probability of workers’ availability 0.6 
Skill range of advance workers (0.85,1] 
Skill range of Intermediate workers (0.65, 0.85] 
Skill range of Beginner workers [0.4, 0.65] 
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