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ABSTRACT

Airbus Helicopters needs to modify its manufacturing lines and workshops to meet diverse client requests
and growing demands for customization. The challenge is to develop adaptive, dynamic production systems
and to optimize key performance indicators. The main goal is to maximize customer satisfaction and mini-
mize delivery times, investments, costs, and work in progress. Airbus Helicopters has long used a classical
simulation-based technique to define the best settings for its production lines. Nonetheless, the model needs
48 hours to complete each run and test a single set of parameters for the workshop. This paper presents an
artificial intelligence based surrogate model designed to outperform traditional simulations by potentially
delivering similar results much faster, in seconds rather than hours. It has been trained with synthetic data
generated by a genetic algorithm and the simulation.
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1 INTRODUCTION

Due to the increasing market demand for customization, Airbus Helicopters must quickly modify its pro-
duction techniques to satisfy a wide range of customer needs. It is difficult to balance the need for flexibility
with the importance of optimizing performance indicators, like work-in-progress, investment, and delivery
times. The company has always used simulation to optimize manufacturing parameters. This methodol-
ogy’s enormous number of characteristics and complexity make it difficult to quickly identify the optimized
organizational strategies.

Numerous studies have noted that selecting the best settings in simulation models is difficult due to the vast
number of configurations [1]. To overcome this issue, some works have looked into connecting machine
learning (ML) with simulation models. Simulation models are used to construct predictive models, which
are subsequently trained on synthetic data [2]. This method helps reduce calculation time and total expenses,
which makes it useful in complex simulations.

The method described in [3] is a major step in this direction, building on a study of machine learning’s po-
tential for simplifying complex simulation models. It presents an approach that integrates machine learning
meta-models with active learning within extensive simulations. This approach has been used in industrial
settings, especially sawmilling, where it controls model training across a wide range of simulation param-
eters. By applying this innovative approach, the complexities of parameter combinations in simulation
models are more effectively managed, leading to enhanced precision in forecasting outcomes.
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A lot of progress has been made in the field of aeronautical engineering. As explained in [4], machine
learning techniques have been applied to improve the design and optimization of electric aircraft motor
drive systems. Aeronautical science has advanced with this research, which could result in more effective
and efficient electric aircraft propulsion systems.

The key element of artificial intelligence (AI) is data. The context and application determine the type and
source of data. In order to guarantee that AI models are precise and dependable in real-world applications,
it is crucial to train and improve them. On the other hand, there are situations in which acquiring real-world
data is difficult or impossible. Data that has been artificially created to mimic real-world occurrences is
known as synthetic data. Its purpose is to closely emulate the attributes of real data, enabling the training and
evaluation of AI models in environments or circumstances where access to real data is limited or non-existent
[5]. This method works well when there’s limited real data for training models. It ensures the machine
learning models are accurate and flexible, ready to deal with various future situations and challenges.

This paper focuses on presenting a deep learning model designed as an alternative to conventional discrete
event simulation models. The model will be integrated with a genetic algorithm—a method inspired by
natural selection processes in biology used to solve optimization problems by evolving solutions over gen-
erations [6]—to optimize the parameters of production lines. To address these challenges, the initial step
involves creating a comprehensive dataset. This will be accomplished by coupling a genetic algorithm with
the Anylogic[7] simulation model—a versatile platform for modeling and simulation of complex systems,
supporting methodologies like discrete event and agents -to generate the necessary data. Subsequently, this
data will be utilized for training the neural network. Once the training is complete, the neural network will
serve as a surrogate for the simulation model. The goal of this integration is to accelerate and enhance the
optimization process of production line parameters. This integration aims to improve the efficiency and
effectiveness of determining the optimal settings and configurations for production lines, which can include
factors like the number of operators at each workstation, scheduling, resource allocation, and workflow
management.

2 BACKGROUND

2.1 Industry 4.0: Modernizing for the Future

Airbus Helicopters is in the process of modernizing its industrial operations to align with the advanced
concepts of Industry 4.0. As the European Factories of the Future Research Association (2012) points out,
this shift toward an industrial model that is future-focused makes use of digital simulation and prediction
technologies, which are essential for the integrated management and design of production systems. Cutting-
edge technologies, such as artificial intelligence (AI), digital twins, and the Internet of Things (IoT), are
at the core of Industry 4.0 [8]. Predictive metamodels, augmented by historical data, are particularly ad-
vantageous in the field of AI [9]. These models are fundamental to the development of ML technologies.
Adapting multilayer perceptrons for simulation model optimization -like in sawmill workshops—is one of
these developments. The critical role of digital twins in virtualization and IoT, particularly in improving
information sharing, is highlighted in [10]. Even if Airbus Helicopters hasn’t reached digital maturity yet,
the company has all the tools required for efficient workshop modeling. Even though these models don’t
presently communicate with their real-world counterparts directly, they are nonetheless very useful for de-
veloping, scaling, and testing operational modes in workshops. This results in enormous datasets that are
ready for AI research and use.
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2.2 Integrating Machine Learning with Simulations

AI, especially machine learning, is frequently integrated with simulations. A study [2] categorizes this
integration into two approaches: simulations enhancing machine learning and vice versa. Simulations can
be embedded into machine learning algorithms for direct integration [11] or to expand training data [12].
Conversely, machine learning models can replace standard simulations [13] or analyze data within them
[14]. However, [2] points out a gap in research: the full integration of simulation and machine learning.
The study suggests future research should focus on optimizing the use of simulation outputs, embedding
machine learning into simulation engines for interactive processes, and developing surrogate models within
simulations to enhance efficiency and adaptability.

2.3 Machine Learning in Industrial Optimization

Optimization challenges and their solutions are common in the industrial sector, spanning diverse areas such
as supply chain management, production scheduling, and energy efficiency. However, due to the complexity
and multitude of parameters involved, finding the best solution is often a time-consuming and computation-
ally expensive task. Machine learning, particularly neural networks, offers a promising approach to these
challenges by adeptly handling high-dimensional data and complex variable relationships. [15] goes into
more detail about a new way to speed up optimization in industrial settings by combining neural networks
with multi-fidelity models. This integration enables the neural network to mimic the operational procedures
of the less complex model, reducing the need for expensive data in the learning process. Such a method not
only enhances computational efficiency but also provides high-quality solutions with limited data, marking
a significant improvement over traditional optimization methods. Looking ahead, further research and de-
velopment in this area could focus on scaling and adapting these techniques to a wider range of industrial
applications, potentially revolutionizing the way industries approach optimization.

2.4 Optimization Based on Surrogate Models

A surrogate model is an alternative to complex simulations or computational programs, designed to reduce
computational effort in engineering and optimization tasks. This method uses techniques like Kriging,
quadratic interpolation, or least squares regression, which are used after a first simulation that uses a lot of
resources [16]. Surrogate-based optimization, as suggested in [17], is particularly effective in fine-tuning
the operating parameters of workshop machines. This technique uses a range of optimization methods,
quickly converging to an optimal solution—local or global— by substituting the original, computationally
demanding model with a more cost-effective surrogate. A machine learning model, once trained to interpret
simulation inputs and predict outcomes, can serve effectively as a proxy.

3 METHODS

Manufacturers face challenges in making complex helicopter parts like the Main Gear Box (MGB) and Main
Rotor Hub (MRH) due to growing customer demands. They aim to make helicopters safer, more reliable,
and readily available. Adopting digital technologies helps in design and testing. Working with industry
partners is key to enhancing processes and ensuring quality. This situation underscores the continuous need
for innovation in helicopter production.

3.1 Context and Industrial Problems

Figure 1 shows the collaborative efforts of Airbus’s Industrial Architect System Team. This team is divided
into two main groups: the Product Design Team, which focuses on helicopter design, and the Production
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System Design Team, tasked with developing the production framework. They work together to ensure
the design is practical and the production system is ready for manufacturing. The Simulation Analysis
Group plays a crucial role in this integrated approach. They validate the design and manufacturing plan by
developing and fine-tuning complex simulation models. These models are key for assessing design viability
and enhancing manufacturing setups. Lastly, the Production Operations Team oversees the execution of the
production process. They rely on key production metrics to efficiently start production and plan for future
production needs.

Figure 1: Use case for simulation and surogate model.

An initial collaboration between Airbus Helicopters and Aix-Marseille University, focusing on ML and
simulation, has highlighted the challenges associated with simulation models in real-world production envi-
ronments. Therefore, although these models are effective in predicting and confirming design choices, they
often struggle to provide the quick turnaround required in actual production settings. This collaboration un-
derscores the need to overcome these limitations to enhance the efficiency and responsiveness of production
processes.

To bridge this gap, the research proposes the development of surrogate models. These models offer faster,
more practical feedback for real-time production scenarios, which is essential for the dynamic environment
of helicopter manufacturing. By enhancing simulation methods and improving algorithms, as explored in
the Airbus-University collaboration, these surrogate models can provide the agility needed in production
processes.
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The surrogate models developed from this collaboration serve as a decision-making tool, offering a quicker
and more streamlined alternative to traditional simulation models. This advancement helps to achieve a fluid,
responsive production flow, enabling manufacturers to rapidly adapt to both planned strategies and unfore-
seen changes in the workshop. This development contributes to the creation of a responsive, fluid production
flow that makes it possible for manufacturers to quickly adjust to both anticipated and unanticipated changes
in the workshop. As a result, the project marks a substantial advancement in the practical, real-world in-
tegration of cutting-edge technologies like machine learning and simulation in the aircraft manufacturing
industry.

3.2 Case study: advancing manufacturing efficiency with discrete events and agent-based simulation

The ‘MECA 4.0’ workshop at Airbus Helicopters, specialized in manufacturing transmission boxes, rotors,
and rotor assemblies, plays a pivotal role in producing new components for final assembly lines (serving
internal customers) as well as maintaining and producing spare parts (for in-service helicopters). Each
customer has specific requirements for components based on the helicopter’s intended use. The workshop is
organized into various stations for assembling sub-components and additional ‘backup’ stations for storing
parts during production delays. The production pace is set based on assembly demand projected over three
years, with workshop policies potentially changing annually.

Anylogic is used at the MECA 4.0 workshop as a simulation tool to test various scenarios. Its hybrid
approach combines discrete event and agent-based modeling to deliver an in-depth analysis of operational
workflows. Discrete event modeling efficiently tracks distinct processes and the circulation of materials,
while agent-based modeling provides insights into the behaviors and interactions of individual elements,
such as workers and workstations. This integration of methods enhances the simulation, offering a more
sophisticated understanding of the dynamics within the workshop.

3.3 Data

To conduct precise simulations with Anylogic, two types of data are essential: customer demand and work-
shop parameters. The customer orders set out the assembly sequence for the next three years, including
specifics on each part, its production method, and the deadline. While the quantity of parts and deadlines
are constant in this study, the nature of the demand changes based on the type of part and applied production
policies. Thus, each order consists of 754 demands, with each demand defined by seven attributes as shown
in Table 1.

Table 1: Description of customer demand characteristics.

Characteristics Type Interval Description
Client request Categorical MGB, MRH , Poste Type of product
Needed Date Date Delivery date Date to deliver the product to the customer
MRH Model Categorical M1.1, M1.2, M1.3, M1.4 Variants of Main Rotor Hub (MRH )
MGB Model Categorical M2.1, M2.2, M2.3, M2.4 Variants of Main Gearbox (MGB)
Poste Model Categorical M3.1, M3.2, M3.3, M3.4 Variants of poste
Customer Binary [0, 1] 0 : Internal, 1: External
Assembly line Binary [0, 1] 0 : Line 1, 1: Line 2

Table 2 details vital parameters for the MECA 4.0 workshop, identifying their type (mainly integers), range
of values, and specific definitions. These parameters, established in collaboration with the operational team,
are key to adapting the workshop to meet client requirements. They encompass elements such as pre-stock
for MGB and MRH components, numbers of production and backup stations for different components, and
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the availability of trolleys and kits. This framework helps understand the impact of each parameter on
manufacturing efficiency.

The CONWIP system [18], used by Airbus for managing production inventory, CONWIP MGB and CON-
WIP MRH specifies the stock levels for these components, while CONWIP PSE determines the reserve for
assembled MRH and MGB components. The workshop features two main production lines, line 1 and line
2, each with several stations denoted by number of stations dedicated to production for line 1 and number of
stations dedicated to production for line 2. Components are moved to backup stations in case of assembly
delays. These parameters control both daily operations and the workshop’s performance over three years,
ensuring a consistent production rate in line with dynamic customer demands. The goal is to enhance and
support manual management of these processes for efficient, market-responsive manufacturing.

Table 2: Parameter characteristics description.

Characteristics Type Interval Description
PSE CONWIP Integer [10, 40] Elementary pre-stock for assembly of MRH and MGB
MGB CONWIP Integer [10, 40] Advance MGB stock
MRH CONWIP Integer [5, 40] Advance MRH stock
Poste CONWIP Integer [4, 30] Pre-stock assembly of MGB and MRH components
Number Stations line 1 Integer [2, 6] Number of stations dedicated to production for line 1
Number Stations line 2 Integer [1, 5] Number of stations dedicated to production for line 2
Backup pse Integer [1, 5] Number of backup stations pse
Backup MRH Integer [1, 5] Number of backup stations MRH
Backup MGB Integer [2, 5] Number of backup stations MGB
backup poste Integer [2, 5] Number of backup stations poste
Trolley 1 Integer [1, 5] MGB trolley number
Trolley 2 Integer [2, 5] MRH trolley number
Trolley 3 Integer [1, 3] Poste trolley number
Number of kits for pse Integer [1, 5] Maximum number of pse kits
Number of kits for MGB Integer [1, 5] Maximum number of MGB kits
Number of kits for MRH Integer [2, 5] Maximum number of MRH kits
Number of kits for poste Integer [2, 5] Maximum number of poste kits

3.4 Analysis and Simulation Objectives with the Anylogic Model.

‘Parameters’ and ‘Customer Request’ are the two Excel files required in order to run the Anylogic model.
As shown in Figure 2, these files are used to create the intended outcome file. Analyzing and simulating the
workshop’s daily work in progress (WIP) and precisely estimating the dates of each product’s production
completion are the main goals of the Anylogic model. This data is used to calculate the two key performance
indicators (KPI), which are the average WIP of three years and customer satisfaction, which is defined as
an average of the delay in delivery time. These two KPIs, as well as the production stations’ financial
investment, are the fundamental prediction goals of our improved model. As such, the present study centers
on a regression analysis designed to accurately assess these variables. This is done to improve delivery time
and the workshop’s operational efficiency while effectively controlling financial expenses.

3.5 Coupling Simulation with Genetic Algorithm.

In the following section, we go over the optimization strategy that was utilized to fine-tune the workshop
settings in order to improve operations, increase delivery time, and reduce Work in Progress (WIP) and
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investments. To accomplish this, a set of fictitious client requests was constructed in order to calibrate a
production simulation model built using AnyLogic. A genetic algorithm was selected for this challenge since
it is inspired by natural evolution concepts such as selection, mutation, and genetic crossover as depicted in
Figure 2.

Figure 2: Integrating Genetic Algorithms in Simulation Processes for Synthetic Data.

The evolutionary algorithm’s fundamental goal is to discover the optimal combination of production pa-
rameters to dramatically improve the workshop’s performance based on key performance indicators (KPIs).
Iterative optimization occurs over 200 cycles to progressively adjust the parameters towards the most optimal
solution. The procedure begins with the first populating of parameter files in conjunction with client request
files. These are sent into the Anylogic model, which then computes the KPIs, such as work in progress,
investments, and customer satisfaction. Each set of parameters is examined, and a fitness score is given.
The best configurations are chosen for crossings and mutations, resulting in a new parameter population.
This fresh population is reintroduced into the Anylogic model for another round of KPI assessment. This
cycle is performed 200 times for each of the 30 demographics in response to the 155 customer requests. The
whole procedure enables full traceability and triplet records in a database organized as triplets: customer re-
quest, workshop parameters, and achieved outcomes. Finally, the database contains 30 × 200 x 155 triplets,
which provides a significant quantity of data for training a neural network model. This systematic approach
provides accurate optimization and a full examination of the numerous aspects and their influence on the
workshop’s operating goals.

3.6 Optimizing Surrogate Models with Neural Networks in Active Learning Frameworks

Inspired by the work in [19], which integrates a principal component with a cost prediction module, this
research developed a multi-layer perceptron (MLP) model. The model comprises three layers, each one
having 128 neurons and using the Selu activation function. Similarly, the cost prediction module employs
the Selu activation function, leveraging the MLP structure to generate precise cost estimates across various
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data combinations. The model was trained in batches of 8 for 300 epochs, with hyperparameter optimiza-
tion carried out via the GridSearch technique. This process of evaluating different network architectures and
activation functions led to the selection of the current MLP configuration and the Selu activation function,
ensuring an optimal blend of computational efficiency and performance for the dataset. Following the train-
ing phase, the cost prediction module was assessed for its effectiveness in the context of active learning.
The model was then combined with a collection of 155 queries and fed into a genetic algorithm for data
selection as shown in Figure 3. This procedure centered on picking the top 50 triplets with the greatest cost
projections, as indicated by the module, who were then evaluated using the Anylogic oracle. The correctness
and reliability of the module’s cost function were established in the active learning framework via a com-
parison with the Mean Squared Error (MSE) measure. This method, which incorporates a cost prediction
module inside an MLP model, represents a substantial development in optimizing data selection for active
learning, hence improving the overall efficiency and accuracy of the learning process. The model develops

Figure 3: Integrating Genetic Algorithms and Neural Networks for Surrogate Models.

a tendency to predict certain attributes, such as high customer satisfaction, in a disproportionate manner
when those attributes predominate in the training data. This phenomenon is further intensified when the
dataset is constrained, thereby impeding the model’s capacity to acquire knowledge of a wide range of sce-
narios. In order to rectify this disparity, active learning has been incorporated into our methodology. Active
learning is a methodology in which the model proactively recognizes and chooses annotated data that, when
incorporated into the training set, optimizes the gain of valuable insights. We looked at two active learning
approaches side by side: the one suggested in [19] is specifically designed for improving models, and the
one created in [13] is focused on picking the best data for classification. While the former has yet to be
evaluated in the context of model substitution, it does provide an intriguing viewpoint on the matter of data
selection. The efficacy of the latter has been previously showcased in more straightforward frameworks.
80%, 10%, and 10%, respectively, are the training, validation, and test sets in our database. Initial training
is conducted using a dense neural network on standardized data. Our research is distinguished by the way in
which we convert sequential data into a matrix structure that is appropriate for dense neural networks. Fol-
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lowing the preliminary assessment, active learning is executed. Fifty data points are labeled using Anylogic
and incorporated into the training set in accordance with the selected method. By repeating this cycle forty
times, the model is progressively refined.

4 RESULTS

This portion of the paper discusses the findings of the active learning experiment, with an emphasis on data
selection via cost function prediction and optimization.

4.1 Data Selection by Cost Function Prediction

The study in [19] demonstrates the strategy’s effectiveness in selecting data for labeling in classification
and regression tasks. This method was used to forecast variables based on many criteria, including WIP,
investment, and delivery time. Significant variations in prediction error and accuracy were found when two
different cost functions, Mean Squared Error (MSE) and Learning Loss Loss Function (3LF), were used
for assessment. However, the model had difficulties in practical application, especially when attempting to
forecast customer satisfaction, which resulted in an overestimation of the population and prevented optimum
convergence.

Figure 4: Training and validation cost functions.

4.2 Active Learning through Optimization

The research looked at how active learning may be used in the optimization process and showed how it
might lead to designs that are closer to the global optimum. The cost functions converged well in the early
findings, and there was no sign of overfitting. Even with the use of active learning, the model’s extreme
confidence in its predictions persisted, especially when it came to customer satisfaction. Although the active
learning strategy has shown some progress, the model as a whole is still too basic to be used in real-world
industrial settings. These findings highlight the need for further developing and improving active learning
techniques in order to increase their effectiveness and suitability for use in challenging situations.
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5 DISCUSSION

In contrast to a stochastic strategy, the research [19] emphasizes the efficacy of a unique technique for
data selection in labeling tasks across many classification and regression situations. In our research, we
apply this method to predict Work In Progress (WIP), investment, and customer satisfaction, taking into
account customer demand and operational parameters in a workshop environment. The evaluation of the cost
function prediction model utilizes two distinct functions: Mean Squared Error (MSE) and the Three-Layer
Function (3LF), as introduced in [19]. Both functions are designed to assess errors in pairwise elements
within the same batch. The results from the initial training, as shown in Table 3, reveal low prediction errors
for both methods. However, the 3LF records a 20% lower error rate than the MSE, indicating its potential
superiority for further active learning training.

Table 3: Comparison of the accuracy and prediction errors.

MSE 3LF
Prediction error (MSE) 9.98e-2 8.01e-2
Error in module prediction 2.45e-2 9.5e-3
Accuracy of Modules 2.82e-4 5.63e-4

Nonetheless, when applied in a genetic algorithm, the model exhibits significant discrepancies between
actual and predicted distributions, notably in customer satisfaction predictions, leading to overestimations
and an ineffective emulation of the Anylogic model.

6 CONCLUSION

This study highlights the potential of machine learning, particularly through the use of Multi-Layer Percep-
trons (MLP), in speeding up optimization processes by simulating traditional, time-intensive models. While
effective in certain aspects, especially in dynamically changing environments like workshops with varying
customer demands, the complexity of tasks such as cost prediction presents notable challenges. These chal-
lenges limit the development of a fully effective active learning module with MLPs. The findings reveal that
while specific cost functions show promise in the initial phases of learning with MLPs, their global applica-
bility is limited, and there is no one-size-fits-all solution. Additionally, despite improvements in resilience,
these MLP models continue to exhibit data biases, which hamper optimization results. Additionally, the
study shows that MLP models can partially copy discrete event models like the Anylogic model without
needing a lot of information about how the workshop works. This indicates the potential for adapting these
methodologies to various types of discrete events and agent-based models. As a future perspective, it is
suggested to explore the use of advanced neural network architectures such as Long Short-Term Memory
(LSTM) networks and Convolutional Neural Networks (CNNs). LSTM, with its proficiency in handling se-
quential and time-series data [20], and CNN [21], known for its effectiveness in spatial data interpretation,
could offer more nuanced and adaptable solutions to the complex problems highlighted in the study. Their
potential to provide deeper insights and more robust modeling capabilities could significantly enhance the
effectiveness of machine learning models in intricate industrial applications.
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