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ABSTRACT

Advanced Modelling and Simulation (M&S) techniques, including Digital Twins (DTs) and Hardware-In-
the-Loop (HIL) simulation, are essential for the design and operation of today’s complex systems. Despite
these advances, there remains a gap between the simulation methods used in design and those used in
implementation. This paper introduces a Real-Time (RT) simulation framework that connects models using
the Discrete-Event System Specification (DEVS) with external systems, improving implementation and
operation. The Python xDEVS tool has been enhanced to introduce a new suite of real-time simulation
components and a DEVS-based communication interface, facilitating adaptable communication protocols.
The framework demonstrates its capability to integrate both DEVS and non-DEVS systems and establish
effective communication through various experiments, ranging from RT simulation of DEVS models to
complex multi-component systems. This tool has significant potential in supporting real and incremental
system implementations through HIL techniques, making a valuable contribution to complex system design
and operation.

Keywords: DEVS, Real-Time, Hardware-In-the-Loop.

1 INTRODUCTION AND RELATED WORK

Modeling and Simulation (M&S) techniques are essential for the design and implementation of complex
systems within the emergent domain of Industry 4.0 [1]. These methodologies facilitate representing the
behavior of systems under development, enabling the identification of bottlenecks or design flaws, thus
reducing associated costs and development duration. M&S is a multidisciplinary field, finding applications
across various areas ranging from train traffic management [2] to queuing theory analysis [3] and polymer
research [4].

M&S techniques can be classified based on their temporal modeling approach [5]. In Discrete Event Sim-
ulations (DESs), events occur chronologically in discrete instants of time and result in a change in system
state [6]. Some of the most popular DES approaches are Petri nets [7], Markov chains [8], or the Discrete-
Event System Especification (DEVS) formalism [5]. DEVS is notable for its modular and hierarchical
specification, which allows the system to be decomposed into small independent modules. Moreover, the
mathematical basis of this methodology facilitates the formal verification of the different parts that comprise
the system, providing a rigorous definition for discrete-event modeling and simulation. In DEVS, there are
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two ways to describe how a system behaves: atomic models, which represent a system’s autonomous be-
havior as a series of state transitions and responses to outside events, and coupled models, which depict a
system as the interconnection of other DEVS components, either atomic or coupled.

Most of the DEVS-compliant simulation engines are based on the abstract simulator algorithm [9]. This
approach uses independent coordinating simulation engines to synchronize parallel activity along asyn-
chronous processors. This algorithm has two types of simulation engines: simulators, which govern the
behavior of their respective atomic models, and coordinators, which manage message propagation and
synchronize their subordinate simulators and coordinators. Both entities adhere to the same interface, sim-
plifying model encapsulation and reinforcing the hierarchical concept of DEVS.

Nowadays, simulating a system within a virtual time environment is largely straightforward. However, with
increasing complexity and demands on the system, simulated environments may lack realism. Consequently,
alternative simulation techniques such as Digital Twins (DTs) [10] and Hardware-in-the-loop (HIL) [11]
have emerged in recent years. DTs refers to the virtual copy that aims to replicate the behavior of a physical
entity [10], meanwhile HIL is the introduction of hardware components into the simulation loop rather than
testing on pure mathematical models [11]. Following these techniques, the Real-Time (RT) simulation has
become more relevant. A RT simulation can be understood as a process that must match the wall-clock
time (i.e., if a certain physical process takes two seconds, the same process must take two seconds in the
simulation). Combining DTs, HIL, and RT simulations allows for more complex and realistic scenarios.
These RT simulations have benefits such as achieving an objective representation, testing dynamic interac-
tion among systems, or making a deeper assessment of safety and risks [12]. Although DEVS is being used
for different projects, few of them focus on the RT paradigm due to a lack of standardization or proposed
methodologies. An excellent example in the literature details the enhancement of Cadmium, an existing
DEVS simulation framework, to incorporate RT simulation [13]. The utility of the adapted tool has been
evidenced through several case studies, including a line-following robot and a sophisticated sensor network.
This adaptation involved developing an additional real-time clock to align software time management with
actual time delays. At the cost of modifying the DEVS models, they support this new modality.

This work aims to provide a new methodology to deal with RT simulation for DEVS. Although there are
examples in the literature of RT in DEVS, none of them adhere to the formalism and, as a consequence,
the atomic and coupled models, as well as the simulation protocols are changed. On the contrary, our
methodology keeps the integrity of pure DEVS models, and it is by processing the external events how the
RT is achieved. This results in a more flexible solution to the actual paradigm. This solution has more
outlets, as it can be applied to any model already defined without having to modify it. In addition, our
methodology has the potential to serve as a basis for HIL and DT simulation techniques. The methodology
introduces new components responsible for managing interactions between the simulation environment and
the physical world. In addition, the system can detect timing deviations and correct them if they are small
enough. Finally, some examples illustrate how this new methodology can be used and applied. From the
system under study, the RT simulation is analyzed, assessing how much time differs from the desired one to
the simulated one. Later, a complex system integrates the communication between DEVS and non-DEVS
models, illustrating the use of HIL techniques. The work is based on the Python version of the xDEVS
simulator [14]. Unless otherwise stated, when referring to xDEVS, it implies the context of the Python
implementation.

The remainder of this paper is organized as follows. Section 2 and Section 3 provide details about the
proposed RT DEVS approach. Section 4 illustrates how the proposed RT simulator can be used to run RT
simulations and connect to external entities using different communication techniques. Finally, Section 5
draws the main conclusions and discusses future work.
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2 SYSTEM OVERVIEW

In our proposed approach for RT simulation of DEVS models, we introduce three novel components: the
RT coordinator, the RT manager, and the Input/Output (I/O) handlers. The RT coordinator is based on the
abstract simulator algorithm as described by Chow in 1994 [9] and is currently implemented in xDEVS.
We have extended its capabilities to efficiently manage external events by enabling interaction between the
DEVS model and the RT manager. The RT manager is a new component whose primary function is to
manage the incoming and outgoing events of the system. It directly interacts with the different handlers, as
it re-routes events to and from them. In addition to handling the external events between the coordinator
and the handlers, the RT manager provides the RT behavior to the simulation. Finally, the I/O handlers are
responsible for the communication interfaces of the system. Input handlers inject events into the system, and
output handlers process output events to re-route them outside the simulation. We establish an abstract inter-
face to characterize these components, allowing the simulation to communicate with any type of technology
or protocol such as Transport Control Protocol (TCP) or Message Queuing Telemetry Transport (MQTT).

Figure 1 illustrates the architecture of the proposed system. We categorize system components based on
the temporal domains within which they operate. The DEVS model and the RT coordinator work in a
virtual time framework. This is the temporal dimension governed by the simulation’s internal logic. On the
other hand, the RT manager and the I/O handlers operate according to wall-clock time. The RT manager is
responsible for translating both time domains and ensuring that there is no time drift.

RT Coordinator

DEVS Model

RT Manager

Input Handlers

Output Handlers

Virtual Time Wall-Clock Time

Figure 1: Overview of the proposed approach for RT simulation on DEVS.

Figure 2 presents an overview of an RT simulation. It exemplifies the general behavior between the I/O
handlers, the RT manager, and the RT coordinator during an execution. Further details of each component
are given in Section 3. The RT coordinator first executes the internal transition function of the model, δint .
This function is in charge of transitioning to the next state of the model if no input is received. The next
internal transition function is expected at t = t1. Thus, the coordinator asks its RT manager to wait until
that time by calling its sleep(t1) method. In summary, this method will block the system by waiting for
external events. The waiting time interval is colored purple. In the first case, no input events are received.
Therefore, the RT manager returns the tuple (t1, /0) to inform the RT coordinator that we have reached t1
without any external interruption. Thus, the RT coordinator will execute the output function (λ ) and internal
transition functions. Next, it will eject, if any, the outgoing events. To do so, the RT manager forwards these
events to all the output handlers. Figure 2 represents this process with orange arrows. In the next purple
period, the RT manager receives an event from one input handler (green arrow) before the next timeout, t2.
Therefore, the RT manager waits for a window period to aggregate input events. The window period is blue
in Figure 2. At t = t ′2 < t2, the time window expires, and the RT manager returns the tuple (t ′2, input ̸= /0) to
notify the RT coordinator that an external event occurred. Consequently, the RT coordinator only executes
the external transition function (δext) and ejects the leaving events, if any. Finally, the RT manager receives
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new input events, but the time window collides with the next expected internal transition, t3. Therefore, the
incoming events that have arrived until that time are returned in the tuple (t3, input ̸= /0) In this case, the RT
coordinator executes the output and confluent transition functions and ejects the leaving events.

InputHandler OutputHandler
RealTimeManager RealTimeCoordinator

δintsleep(t1)

λ, δint

t1, ∅

output
sleep(t2)

output

λ, δcon
output

t'2 < t2, input

δext

sleep(t3)

 t3, input

sleep(t4)

Figure 2: Sequence diagram of the RealTimeCoordinator.simulate() method.

3 REAL-TIME COMPONENTS

This section delves deeper into each of the main components that the methodology proposes to achieve a
RT simulation and the handling of external events.

3.1 Real-Time Coordinator

The RT coordinator is constructed from the already existing class Coordinator in xDEVS. The
xDEVS framework implements the abstract simulator algorithm [9]. This algorithm is made up of co-
operating simulation engines (simulators and coordinators) that synchronize DEVS models during exe-
cutions to achieve a simulation implementation. However, we customized the xDEVS coordinator to
our use case to allow RT simulation. Consequently, the new class RealTimeCoordinator is
created. The two core differences are that, first, unlike its parent class, it expects a reference to the
RT manager in the constructor function. This allows both components to communicate and exchange
events. Second, the new RealTimeCoordinator.simulate() method replicates the functionality
of Coordinator.simulate_time(), but for our RT context.

Listing 1 illustrates a simplified pseudo-code of the new RealTimeCoordinator.simulate()
method. Broadly speaking, the method will execute the well-known DEVS functions, such as the output
function (λ ) or the state transition functions, which depend on the received inputs to the model (i.e., δint for
no inputs, δext for any input, and δcon if both functions collide). And it will also manage the I/O of external
events to the system through the RT manager.
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1 def simulate(time_interv: float):
2 intialize();
3 while clock_time < time_interv:
4 t, events = manager.sleep(t_next)
5 Inject incoming events
6 clock_time = t
7 if clock_time == t_next:
8 Execute output function
9 Manager propagates outputs

10 Execute delta function
11 Manager ejects outgoing events
12 Clean ports
13 exit();

Listing 1: Pseudo-code of RealTimeCoordinator.simulate() method.

Firstly, the parameter float time_interv determines the simulation time to be executed in seconds.
As soon as the simulation clock time is greater than this value, the simulation is finished. Otherwise, in each
iteration, the coordinator asks its RT manager to wait until the next simulation time, t_next. During this
waiting period, the manager is waiting for input events from external systems. Eventually, the RT manager
will return a tuple with the new simulation time (t) after waiting and a set of input events (events). The
set of events (if any) is then injected into the system through the models’ ports. However, depending on the
state of the input set, we can have different scenarios. If the event set is empty, there has been no external
event and no event will be injected into the system. Therefore, t = t_next and the imminent transition is
due to an internal state transition. Thus, the coordinator must execute the output function before the internal
transition function. On the other hand, if t = t_next but the set of events is not empty, there has been a
state transition collision, so the confluent transition function executes after the output. Finally, if t < t_ ⌋
next, the input set is not empty, indicating that an external event happened. As no internal state transition
was expected, the output function is not executed before the external state transition function.

To summarize the code shown in the listing, the RT coordinator has a behavior similar to that implemented
in the xDEVS framework, where it is responsible for performing the main functions of a DEVS model to
accomplish the simulation of a system. However, in the RT context and following our methodology, its
algorithm is changed. The most significant change is based on the use of the RT manager, which now allows
the injection or ejection of events.

3.2 Real-Time Manager

The RT manager is responsible for interfacing with the input and output handlers to inject input events
from and eject output events to external sources, respectively. Additionally, it provides RT behavior to
the simulation by waiting for incoming events in the system. To achieve these features, we created the
class RealTimeManager. The main attributes of this class can be divided into two groups. Firstly,
we introduce the simulation configuration group:

• float max_jitter: maximum delay jitter the system can assume. By default, it is set to None
(i.e., no maximum delay jitter). If the execution of output and state transition functions takes longer
than max_jitter, the simulation terminates earlier.

• float time_scale: this parameter allows the user to scale the simulation time to make it faster
or slower. By default, it is set to 1 (i.e., no time scale).
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• float event_window: time interval to wait after receiving one input event to group subsequent
events and avoid multiple external interruptions. By default, it is set to 0 (i.e., events are forwarded
immediately without event packing).

Secondly, we present the attributes to keep track of the events and the wall-clock time while simulating:

• SimpleQueue input_queue: a Multiple Producer, Single Consumer (MPSC) queue where
input handlers push incoming events. The RT manager receives them via this queue.

• float last_r_time: the last wall-clock time at which the previous call to the method
RealTimeManager.sleep() finished.

• float last_v_time: the last virtual time at which the previous call to the method
RealTimeManager.sleep() finished.

The behavior of this class is divided into two stages. The first stage occurs during the
RealTimeManager.initialize() method, where it sets the initial virtual and wall-clock times and
creates and activates all the I/O handlers. Each handler runs on an independent thread in daemon mode
(i.e., if the main program exits, handler threads stop abruptly without completing their tasks). The second
stage consists of its RealTimeManager.sleep() method, which is responsible for implementing the
RT feature while waiting for external input events. Figure 3 illustrates a workflow diagram of this method.

next_v_time

RunTimeError last_v_time, eventsYes Not - last_r_time > max_jitter

last_r_time = next_r_time
last_v_time = next_v_time

last_r_time = min( next_r_time , t)
last_v_time = (last_r_time - initial_t) / t_scale

Yes

No

is an event
gotten? Yes

No

t < t_window input_queue.get(timeout = t_window)

input_queue.get(timeout = next_r_time) sleep

Window Process

Figure 3: Workflow diagram of the RealTimeManager.sleep() method.

As mentioned in Section 3.1, this method receives the simulation time at which a model internal event
is expected to happen, float next_v_time. This simulation time is translated into wall-clock time,
float next_r_time. The value of next_r_time is computed as follows:

next_r_time = last_r_time+(next_v_time− last_v_time)∗ time_scale. (1)

Next, the RT manager waits for incoming events from the input handlers. By calling the input_ ⌋
queue.get(next_r_time), the whole system is blocked by the queue until an event arrives or until
the wall-clock time reaches next_r_time. This blocking achieves the RT behavior of the system.
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If a message arrives, the RT manager waits for event_window additional seconds to group input events
before continuing. The next queue deadline, t_window, is computed as follows:

t_window = min(t + event_window,next_r_time), (2)

where t is the wall-clock time of the instant at which the first event was received. Notice that using the min
function ensures that the next internal event of the DEVS model is not ignored. Figure 3 outlines this window
process with a blue dashed box. Regardless of whether events are received, the variables last_r_time
and last_v_time are updated for the next iteration. In the case of no events, the update is straightforward
as the finish time is expected to be the next time computed at the beginning. On the other hand, if an event or
events occur, the finish time must be less than or equal to next_r_time. Thus, last_r_time is set to
the minimum value between next_r_time and the current wall-clock time. In this way, we ensure again
that the algorithm does not miss the next model internal event. The last_v_time is last_r_time
converted to the simulation time scale:

last_v_time =
last_r_time− initial_wall_clock_time

time_scale
. (3)

Finally, the RT manager checks that it did not exceed the maximum jitter allowed, max_jitter. If
the maximum jitter is exceeded, a RunTimeError Exception is raised, and the system simulation is
halted. Otherwise, last_v_time and the list of events received from the input_queue are returned to
the RT coordinator.

Next, we elaborate on the communication between the I/O handlers and the RT manager through queues.
Input handlers inject new incoming messages into a shared MPSC queue in the form of events. The manager
subsequently receives these events, as detailed in Figure 3. In contrast, the RT manager injects all the
leaving events into each of the output handlers’ queues, which are then responsible for reacting to the events
accordingly.

3.3 Input/Output Handlers

The motivation behind the I/O handlers is to be able to adapt external events as input messages and for-
ward output messages out of the simulated system. It is important to remember that the I/O handlers share
a composition relation with the RT manager, meaning that the handlers can not exist without a manager.
The interface for injecting or ejecting messages from or to the system must be standardized. To this end,
it is required to follow a design methodology that will provide a common framework to implement all the
desired manners to inject or eject messages for our system. For that reason, the factory design pattern [15]
becomes significant. In this pattern, the common framework of the I/O handlers are an abstract parent class
with its abstract methods. These methods, although common to any input or output handler, are imple-
mentation specific, giving greater flexibility to the system. Thus, each parent class acts as an Application
Programming Interface (API) to communicate with other parts of the system. However, an abstract class
can not be instantiated. It requires a sub-class that inherits from it and implements the abstract methods.
Therefore, it is the factory the one in charge of creating different I/O handler specifications, hiding the com-
plexity of supporting multiple implementations and enhancing the proposed tool’s flexibility, scalability,
and maintainability. Finally, the power of the factory pattern ends when adding I/O handlers. The methods
RealTimeManager.add_I/O_handler() make this task straightforward. By providing a specific
identifier, the methods can identify which type of handler the user wants to implement in the system. This
makes it easier for the user to configure the scenarios once the handlers have been designed.
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3.3.1 Input Handlers

The abstract class InputHandler describes how to receive messages from external sources and route
them into the system. The Unified Modeling Language (UML) class diagram in Figure 4 illustrates the
different input handlers currently available in xDEVS. Namely, the system supports injecting events via
Comma Separated Value (CSV) files, TCP sockets, and MQTT messages.

InputHandler

- event_parser: Callable[[Any], tuple[str, str]]
- msg_parser: dict[str, Callable[[str], Any]]
- connections: dict[str, str]

+ initialize()
+ exit()

 + run()
+ push_event()
+ push_msg()

1

Connector

TCPInputHandler

MQTTInputHandler

CSVInputHandler

Figure 4: UML diagram of an InputHandlers structure.

The main attributes of the class InputHandler are the following:

• Callable[[Any], tuple[str, str]] event_parser: a function that transforms in-
coming events of any type into tuples (port, message). Both elements of the tuple must be strings.

• dict[str, Callable[[str], Any]] msg_parsers: a dictionary whose keys are port
names, and values are functions that create an object of the corresponding port type from a string.

• dict[str, str] connections: a dictionary to support communication with other indepen-
dent systems. This attribute is used by the input handler’s Connector, which links ports of inde-
pendent systems. Keys represent the ports of the external system we want to establish communica-
tion with, and values are the ports of the model from which the connection is established.

3.3.2 Output Handlers

The class OutputHandler is responsible for transmitting the system’s internal messages to external
sources. In Figure 5, an UML class diagram illustrates the different output handlers currently available in
xDEVS. In line with the input handlers implementations, the system supports saving messages in CSV files,
transmitting them via TCP sockets, and publishing them on an MQTT topic.

OutputHandler

- event_parser: Callable[[str, str], Any]
- msg_parser: dict[str, Callable[[Any], str]]

+ initialize()
+ exit()
+ run()
+ pop_event()
+ pop_msg()

MQTTOutputHandler

TCPOutputHandler

CSVOutputHandler

Figure 5: UML class diagram of anOutputHandler structure.

The main attributes of the class OutputHandler are the following:

• Callable[[str, str], Any] event_parser: event parser function. It transforms in-
coming tuples (port, message) into events. Note that both are represented as strings.
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• dict[str, Callable[[Any], str]] msg_parser: message parser function. Keys are
port names, and values are functions that take any object of the corresponding port type and convert
it into a string. If a parser is not defined, the output handler assumes that the port type is str and
forwards the message as is.

Furthermore, the OutputHandler has a queue.SimpleQueue queue, where all the desired events
to be ejected are put. In contrast with the input handlers, each output handler has its queue.

On the other hand, the output handler’s run() method is an @abstractmethod, so every plugin has
to implement it. As the outgoing messages have to follow some kind of syntax according to the protocol
implemented, a format parser takes place. This translation between xDEVS language to the implementation
specification is achieved with the following methods. First, pop_message() -> tuple[str, str]
waits until it receives an outgoing message in the queue and returns two objects that identify the output
port and the message as strings. It uses the msg_parser attribute to do so. Second, pop_event() ->
Any waits until pop_message() returns a port and a message in the string format. Using the attribute
msg_parser, it parses them into an event for the specific implementation and returns it. This event will
be the one ejecting the system.

4 EXPERIMENTAL RESULTS

The baseline system, illustrated in Figure 6, serves as the foundation for the experiments. This use case
scenario models the operation of a store cashier. In this system, clients (modeled as “ClientGenerator”)
join the line at a store’s queue (modeled as “StoreQueue”). The queue operates on a First Input First
Output (FIFO) principle, matching each client with an available employee, analogous to customers waiting
in line to check out their purchases. Each employee (modeled as “Employee”) signals their availability by
indicating whether they are free or occupied following an interaction with a client, thereby emulating the
process of checking out purchases.

ClientGenerator StoreQueue

Employee

Employee

StoreCashier

Figure 6: DEVS scenario under study.

To evaluate the new RT simulation algorithm, the system is first fully simulated in RT as a single, complete,
coupled DEVS model. Subsequently, the system is partitioned into independent subsystems emulating a
HIL methodology, incorporating I/O handlers and various communication protocols.

Table 1 lists the parameters used to configure the system and its simulation. By setting the values for max_-
jitter and event_window, the system is configured to tolerate time delays up to a maximum of 0.2 seconds,
and events are processed collectively if they occur within 0.5 seconds. A time_scale value of 1 indicates that
the simulation time matches the wall-clock time. Regarding system parameters, the time spent by clients
and employees in the queue and interacting with purchases is modeled using a Gaussian distribution.
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Table 1: Parameters of a basic DEVS simulation.

Configuration Parameter Code name Value Units

Simulation

Duration of the simulation sim_time 52 s
Maximum delay of the system max_jitter 0.2 s
Period for acceptance of subsequent events event_window 0.5 s
Simulation time scale time_scale 1

System

Amount of employees n_employees 3
Clients arrivals period mean_generator 3 s
Period of each employee mean_employees 5 s
Standard deviation of client arrivals stddev_clients 0.5 s
Standard deviation of employees stddev_employees 0.8 s

In the first experiment, as we are conducting a RT simulation, we expect to match the desired simulation time
to the actual recorded simulation time. To this end, Table 2 presents the results of five experiments carried
out to assess the precision of the simulation system when performing RT simulations. Each experiment has
a different simulation duration, as detailed in the first column. The mean actual duration is then determined
from five simulation runs at each scheduled time. This table also shows a confidence interval of the 95%
considering that the samples follow a t-distribution.

Table 2: Real-time simulation results and error.

Desired Time (s) Mean actual time (s) Error (%)
13 13.0078±0.0058 0.0600
31 31.0118±0.0161 0.0380
52 52.0073±0.0036 0.0140
121 121.0054±0.0020 0.0045
185 185.0062±0.0034 0.0034

The relative error is calculated as follows:

e(%) =
RealSimulatedTime−DesiredSimulatedTime

DesiredSimulatedTime
·100, (4)

and expresses the difference between the actual and expected duration as a percentage. The data reveal that
the variance between the actual and scheduled duration across the experiments is negligible and that the error
decreases as the target simulation duration increases. These results are positive because the aim of the first
experiment is to guarantee a precise simulation in wall-clock terms. In addition, the final time of each test is
the result of the correct functioning of each component, which also progresses in RT. Therefore, it supports
the conclusion that employing the proposed RT simulation algorithm achieves the expected behavior.

After validating the proposed RT simulation approach, we now increase the complexity of both the simu-
lation and the system. First, we divide the system into separate DEVS and non-DEVS subsystems. These
subsystems interact with each other via I/O handlers. The new system under study is depicted in Figure 7,
featuring three autonomous subsystems. StoreQueue and Employees are now two independent DEVS mod-
els. Alternatively, the ClientGenerator is now a non-DEVS process that behaves as a customer generator
executing a TCP script. However, with the presence of three distinct systems, communication now occurs
over TCP and MQTT protocols (as seen in Figure 7), rather than through regular DEVS couplings. Addi-
tionally, a CSV file documents the activity logs of the employees. Despite the fact that this experiment is
only software-based, it does not limit the possibilities of a HIL simulation. It not only incorporates well-
known hardware protocols such as MQTT, but also validates communication among independent systems.
This scenario demonstrates the feasibility of incorporating HIL simulations with the proposed methodology,
where the system can be partitioned while maintaining its original functionality.
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MQTTStoreQueue

Employee

Employee

CSV
FILE

TCPTCP
script

MQTT

Figure 7: DEVS scenario with non-DEVS models and mixed protocols.

Figure 8 shows a sequence diagram that illustrates the interactions within the system. The result of simu-
lating the new scenario is positive; however, providing the result of each independent system is out of the
scope of this paper. For that reason, the interactions shown in Figure 8 summarized the result of simulating
the new system. Observe how communication is initiated using TCP or MQTT protocols, as shown in the
lower part of the diagram. Before message transfer, each DEVS subsystem must initialize its corresponding
I/O handlers. Should any issues arise with these handlers, the system reports the error. Once the handlers
are activated successfully, message exchanges begin. The TCP script directs clients to the queue. When
these clients are received as TCP events, the queue tracks the availability of the employees. When a client
is present and an employee is free, the queue pairs them and notifies the Employee system with an MQTT
message. Upon receiving this message, the employee dedicates their time to the client and upon completion,
the transaction is logged in the CSV file.

StoreQueue EmployeeEmployeeEmployeeTCP script CSV FILE

 TCP IH running...

 MQTT IH running...

 MQTT OH running...  MQTT OH running...

 MQTT IH running...

TCP connected  CSV OH running...

MQTT MSGTCP MSG

MQTT MSG

WRITE
CSVMQTT MSG

TCP MSG

(Socket TCP) (MQTT Mosquitto)

(External process) (DEVS-RT) (DEVS-RT)

Figure 8: Sequence diagram of a complex system.

To replicate the simulations carried out in this section, the proposed scenarios and instructions to follow can
be found in GitHub.

5 CONCLUSION

M&S are indispensable tools in the design and development of complex systems, applicable across various
fields and levels of expertise. M&S not only enables the identification and rectification of potential problems
early in the design process but also enhances the overall performance of the system by allowing iterative

https://github.com/iscar-ucm/xdevs.py/tree/ofs-rt/xdevs/examples/store_cashier
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improvements before committing to large-scale production. Despite the widespread utility of simulation
tools, a common challenge is the lack of a unified methodology for implementation, which can complicate
the integration of disparate systems and hinder collaborative efforts. This paper addresses this challenge by
presenting an RT simulation engine that leverages the DEVS formalism to facilitate the integration of DEVS
and non-DEVS systems. The modular nature of DEVS also supports the incorporation of HIL techniques
during system implementation.

The DEVS simulation engine developed in this work builds on the existing xDEVS framework, improv-
ing it with RT simulation capabilities and enabling inter-system communication through various protocols.
We have defined and implemented an RT algorithm that allows for the simulation of DEVS models with-
out altering their original specification. The RT behavior is achieved via RT coordinators and managers.
We also developed a framework for establishing communication between systems, using RT managers and
I/O handlers to support multiple communication protocols. This framework offers a flexible solution for
system-specific communication needs. Furthermore, we implemented an interface for connecting DEVS
and non-DEVS models. I/O handlers facilitate the translation of messages between systems, ensuring seam-
less communication regardless of the underlying technology. Finally, the feasibility of performing HIL
simulations has been demonstrated. The article presents a gradual increase in system complexity, from RT
simulation to a complex system that integrates multiple communication protocols (TCP and MQTT), CSV
files for data logging, and the interplay between DEVS and non-DEVS modeled systems.

This work paves the way for more accurate and flexible RT simulations of complex systems, as well as the
integration of various components of the system. Future improvements could focus on enhancing synchro-
nization among independent systems, introducing the use of digital twins for more accurate modeling of
systems, and considering alternative programming languages better suited for embedded systems, such as
Rust. Nevertheless, this work provides a solid foundation for the development of robust and adaptable RT
simulation tools. The Python code implemented for our simulation tool, as well as instructions to run the
proposed use cases, are publicly available at GitHub [16].
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