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ABSTRACT

Modeling and Simulation (M&S) plays a crucial role in the design and analysis of complex systems, with
the Discrete EVent System specification (DEVS) formalism being a widely adopted mathematical frame-
work. This paper introduces xDEVS no_std, the first version of xDEVS written in the Rust programming
language’s no_std environment. Rust’s features, including a data ownership mechanism, enable the de-
velopment of high-performance, memory-safe simulations. xDEVS no_std focuses on Real-Time (RT)
simulation for safety-critical embedded applications, leveraging Rust’s abstractions to simplify code shar-
ing and cross-compilation. The paper outlines the implementation design and Application Programming
Interface (API), which facilitates the creation of both atomic and coupled DEVS models. The RT simulator
integrates with hardware, handling external interrupts and enabling interactions with the embedded system.
A use case on a RISC-V microcontroller demonstrates xDEVS no_std’s capabilities, illustrating how it can
effectively orchestrate tasks of Cyber-Physical System (CPS) on embedded platforms.

Keywords: DEVS, embedded systems, real-time simulation.

1 INTRODUCTION AND RELATED WORK

Modeling and Simulation (M&S) have become indispensable in designing, developing, and analyzing com-
plex systems [1]. Among the plethora of theoretical M&S methods, Discrete EVent System specification
(DEVS) offers a robust mathematical framework that models systems as entities where state transitions are
driven by discrete events, which can theoretically occur an infinite number of times over a continuum of
time [2]. DEVS adopts a hierarchical structure to encapsulate the behavioral and structural characteristics
of systems using the principles of set theory. The effectiveness of DEVS as a universal modeling formal-
ism has been acknowledged, facilitating the completeness, verifiability, extensibility, and maintainability
of the models [3]. The versatility of DEVS models is underscored by the array of computational frame-
works that facilitate their simulation. Among them, the xDEVS framework [4] provides a cross-platform
multi-programming language Application Programming Interface (API) that unifies existing DEVS tools
with standardized wrappers while providing optimal performance for sequential and parallel simulation [5].

The characteristics of DEVS make it suitable for Hardware-In-The-Loop (HIL) simulation to validate a
system under test [6]. Furthermore, DEVS has been extended to support Real-Time (RT) execution to aid
during the design and implementation of Cyber-Physical Systems (CPSs) [7]. For example, the Cadmium
simulation engine is a specialized RT kernel for bare-metal embedded systems [8]. The effectiveness of
this approach has been demonstrated with different use cases, such as sensor fusion algorithms in smart
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buildings [9]. However, shipping DEVS models on embedded systems without an operating system of-
ten involves intricate workflows, such as programming in low-level languages and using complex cross-
compilation procedures or remote debugging tools. Dynamic memory management, a common requirement
in such tools, introduces uncertainty in predictability and can compromise memory safety. Such issues are
generally avoided or even banned in safety-critical system standards for well-founded reasons [10]. Another
aspect to consider is providing software that guides users in complying with the DEVS formalism while
describing their models. In this context, Cadmium [11] is a C++ framework that follows a dynamic meta-
programming approach to ensure that the model under study fits the DEVS formalism. This tool has been
successful in standard models. However, complex models show long compilation and execution overheads
due to their multiple model verification routines. Furthermore, while Cadmium checks compliance with
DEVS, it cannot avoid possible memory safety errors in the model logic.

In this context, the Rust programming language [12] is an opportunity to address these issues. Rust is a high-
level programming language that provides powerful abstractions without giving up performance. Its modern
ecosystem simplifies code sharing and cross-compilation, and the Rust compiler enforces a data ownership
mechanism to detect potential logic errors in compile time, guiding developers to create safer and higher-
quality code. Rust allows you to define complex macros so that the compiler generates automatic code,
analyzes software properties, and, in the event of an error, prints understandable messages to guide the
developer in resolving it. Rust also presents a no_std environment [13] that opts out of those parts of Rust’s
standard library that rely on services usually provided by an operating system (e.g., file system or dynamic
memory allocation). This helps us to develop multi-platform software that makes no assumptions about the
system that will run the program. Rust no_std enables the development of more robust and predictable code
that can be executed by a wider set of systems, from cloud servers to bare metal microcontrollers.

This paper presents xDEVS no_std, the first version of xDEVS that enables RT simulation of DEVS models
on embedded systems. This simulator is written in Rust no_std and benefits from the memory safety checks
and optimizations of the Rust compiler. To our knowledge, xDEVS no_std is the first DEVS simulation
tool that opts out of using dynamic memory allocation, which makes it potentially suitable for safety-critical
embedded applications. All design decisions of xDEVS no_std aim to help during the design, verification,
and implementation of embedded systems for safety-critical applications with different technical require-
ments. The simulation algorithm leaves RT execution details open for different platforms, thus adapting
to the requirements of each particular use case. For example, hard real-time systems can adapt the timing
behavior of xDEVS no_std to ensure that the application timing constraints are met during execution. It
also follows a robust typing approach that allows compile-time analysis of the model to verify that it com-
plies with the DEVS specification, improving the correctness of the models under study without affecting
run-time performance. The DEVS simulation acts as a lightweight RT kernel of the running embedded sys-
tem. Functions to generate DEVS models are marked as constant (i.e., evaluated at compile time and always
return the same outcome). In this way, the compiler can hard-code them, reducing the model creation over-
head and enhancing the predictability of the application. Furthermore, the API provides the component!

macro, an easy-to-use Rust procedural macro that simplifies the model description process and displays
valuable information about potential model errors to guide users in tracking any possible problem. Rust In-
tegrated Development Environments (IDEs) can use this information to outline where the model error is and
to reduce the model description times. The xDEVS no_std crate is publicly available on crates.io [14].

The rest of the paper is organized as follows. Section 2 provides an overview of the software architecture
of xDEVS no_std. We elaborate on the public API of the crate in Section 3, and Section 4 describes a use
case to illustrate how to create a DEVS-based embedded application executed by a RISC-V microcontroller.
Finally, we present some conclusions and future work in Section 5.

https://crates.io/crates/xdevs-no_std
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2 IMPLEMENTATION DESIGN

This section presents the implementation design of the xDEVS no_std. Figure 1 shows a Unified Modeling
Language (UML) diagram of all the elements comprising this Rust crate. Gray blocks represent private
unsafe traits. These traits are interfaces that xDEVS no_std automatically implements for all user-defined
DEVS models after verifying their proper definition. By marking private traits as unsafe, the Rust compiler
will not allow users to manually implement them. However, all the associated functions of these traits are
safe and comply with the Rust compiler memory safety checks. Alternatively, white blocks denote public
structures and traits that users manipulate to model and simulate their system under study.

<<Unsafe Trait>>
Bag

+ is_empty(&self): bool
+ clear(&mut self):

Port<T: Clone, const N: usize>

+ 0: heapless::Vec<T, N>

 + is_empty(&self): bool
 + is_full(&self): bool
 + len(&self): usize
 + clear(&mut self):
 + add_value(&mut self, item: T): Result<(), T>
 + add_values(&mut self, items: &[T]): Result<(), ()>
 + get_values(&self): &[T]

<<Unsafe Trait>>
Component

+ type Input: Bag
+ type Output: Bag

+ get_t_last(&self): f64
+ set_t_last(&mut self, t: f64):
+ get_t_next(&self): f64
+ set_t_next(&mut self, t: f64):
+ get_input(&self): &Self::Input

 + get_input_mut(&mut self): &mut Self::Input
+ clear_input(&mut self):
+ get_output(&self): &Self::Output

 + get_output_mut(&mut self): &mut Self::Output
+ clear_output(&mut self):

<<Unsafe Trait>>
PartialAtomic

+ type State:

<<Trait>>
Atomic

+ start(state: &mut Self::State):
+ stop(state: &mut Self::State):

 + delta_int(state: &mut Self::State):
 + delta_ext(state: &mut Self::State, e: f64, x: &Self::Input):
 + delta_conf(state: &mut Self::State, x: &Self::Input):
 + lambda(state: &Self::State, output: &mut Self::Output):
 + ta(state: &Self::State): f64

<<Unsafe Trait>>
AbstractSimulator

+ start(&mut self, t: f64): f64
+ stop(&mut self, t: f64):
+ lambda(&mut self, t: f64):
+ delta(&mut self, t): f64

Simulator<M: AbstractSimulator>

+ 0: M

 + simulate_rt(&mut self,...):
 + simulate_vt(&mut self, ...):

Figure 1: UML diagram of the xDEVS no_std crate.

The unsafe trait Bag defines the interface that any DEVS event bag must implement. In xDEVS no_std,
the event bags must be data structures composed of one or more instances of struct Port<T, const N>.
The generic type T determines the type of event data accepted by the port. Attempting to push an event
of a different data type triggers a compilation error. On the other hand, the constant generic N specifies
the maximum number of events that the port can contain simultaneously. As discussed in Section 1, Rust
no_std does not provide any memory allocation mechanism, and while it is possible to define a custom
allocator, this approach is often disregarded in safety-critical applications. To address this issue, struct
Port<T, N> uses a vector implementation of the heapless crate [15] that does not use memory allocation.
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DEVS models must implement the unsafe trait Component. The type Input and type Output associ-
ated types determine the data type used by the model to represent its input and output event set, respectively.
Note that both associated types must implement the unsafe trait Bag. Otherwise, xDEVS no_std causes
a compilation error. Atomic DEVS models must also implement the unsafe trait PartialAtomic, which
determines the associated type State used to represent the model’s state. Otherwise, the Rust compiler will
not allow implementing the public trait Atomic to describe the desired behavior of the atomic model. Un-
like C, Rust allows us to determine which references are mutable. Therefore, we can use this feature to
enforce the correct usage of the DEVS specification at compilation time. For example, the fn delta_ext

function of the trait Atomic expects a mutable reference of the model state and an immutable reference
of its input bag. Alternatively, its fn lambda function cannot modify the state of the model, as it is an
immutable reference. However, the output bag is mutable, allowing us to push output events. Attempting to
break this contract would lead to a compilation error.

Given that xDEVS no_std does not use dynamic memory, high-level abstractions such as polymorphism are
not possible. Therefore, unlike the other xDEVS simulation engines, every atomic and coupled model is an
entirely different data structure that implements its version of the unsafe trait AbstractSimulator, and
no code is shared among structures. In this way, the Rust compiler can check that all the described DEVS
models comply with the proposed interface at no cost in execution time. Additionally, it is possible to apply
better compilation optimizations to improve simulation performance. However, it will tend to produce larger
binaries. Although memory size is a relatively common issue in embedded systems, we do not think this
is a relevant issue for xDEVS no_std, as the complexity of potential embedded DEVS models would be
significantly lower than other simulation tools designed to be executed on hosted systems. However, we
plan to study this limitation in future work.

Structures that implement unsafe trait AbstractSimulator can be simulated using the public struct

Simulator<M>. This structure provides two methods, fn simulate_rt and fn simulate_vt, to run RT
and standard simulations, respectively. Section 3.2 provides more details on these methods. However, man-
ually implementing these unsafe traits for every DEVS model is a cumbersome, repetitive, and error-prone
process. The xDEVS no_std simulator provides the component! macro to aid during the model definition
process. This procedural macro comprises a simple interface that analyzes the model before compiling the
application and checks that it complies with the DEVS formalism. It then automatically implements all the
unsafe traits according to the model specification. In addition, it displays valuable information on model
errors to help users track any possible issue. Section 3.1 describes this macro.

3 APPLICATION PROGRAMMING INTERFACE

This section illustrates how to use the API of xDEVS no_std. We use the Generator Processor Transducer
(GPT) model, a popular example in the DEVS community, to illustrate how it works. Figure 2 shows a
schematic of the GPT coupled model. Every TG s, the generator sends a job that needs to be processed via
its Gout port. The processor receives these jobs via the Pin port and spends TP s before sending the processed
job via the Pout port. The transducer monitors the number of jobs generated and processed via the Tgen and
Tproc ports, respectively. After TT s, the observation window expires, and the transducer sends a message via
the Tout port to tell the generator via its Gin port to stop generating new jobs.

3.1 DEVS Component Macro

In xDEVS no_std, all the DEVS models are declared using the component! macro. This macro simplifies
the model description process by automatically implementing all the unsafe traits of xDEVS no_std. It
also analyzes the model structure to ensure that it properly follows the DEVS formalism and triggers useful
compilation error messages to guide users. The component! macro accepts the following parameters:
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Generator (G)

Transducer (T)

Processor (P)
Gout Pin Pout

Tout

Gin

Tgen

Tproc

Figure 2: Generator Processor Transducer (GPT) model.

• ident (mandatory): it determines the name of the DEVS model to be created.
• input (optional): it describes the input ports of the model. If this field is not provided, it assumes

that the model has no input port. Input ports are provided as a comma-separated list between curly
brackets. Each port must follow the format name<data[, size]>, where name corresponds to the
port name, data is the data type of the messages of the port, and size determines the port capacity.
If size is not provided, it defaults to 1. Port names must be unique.

• output (optional): it describes the output ports of the model. It follows the same format as input.
• state (mandatory for atomic models): it determines which data type represents the model state.
• components (mandatory for coupled models): it enumerates the subcomponents of the coupled

model. Components are provided as a comma-separated list between curly brackets. Each com-
ponent must follow the format name: T, where name is the component name and T is its data type.
At least one component must be provided. Component names must be unique.

• couplings (optional for coupled models): list of couplings provided as a comma-separated list
between curly brackets. Couplings follow the format [comp1.]port1 -> [comp2.]port2, where
comp1 and comp2 are component names, and port1 and port2 are the names of the coupled ports. If
both component names are provided, it is an internal coupling. If comp1 is missing, it is an external
input coupling. Alternatively, if comp2 is missing, the coupling is an external output coupling.

The component! macro automatically deduces whether the model under description is an atomic or a cou-
pled model depending on the fields provided. Fields for atomic or coupled models are mutually exclusive,
and the macro returns a compilation error if users mix them.

3.1.1 Atomic Models

For atomic models, we must provide the state field to the component! macro. For instance, if we want to
define the transducer of the GPT model (see Figure 2), we must use the component! macro as follows:

1 xdevs::component!(
2 ident = Transducer,
3 input = { in_gen<usize, 2>, in_proc<usize, 1> },
4 output = { out_stop<bool> },
5 state = TransducerState
6 );



Cárdenas, Malagón, Arroba, and Risco-Martín

This macro creates three new data structures: TransducerInput, TransducerOutput, and Transducer.
TransducerInput and TransducerOutput comprise the ports specified in the macro call and represent the
input and output sets of the transducer model, respectively. The following code snippet shows the code
automatically generated by the component! macro for the struct TransducerInput:

1 pub struct TransducerInput {
2 pub in_gen: xdevs::port::Port<usize, 2>,
3 pub in_proc: xdevs::port::Port<usize, 1>,
4 }
5 impl TransducerInput {
6 pub const fn new() -> Self {
7 Self{ in_gen: xdevs::port::Port::new(), in_proc: xdevs::port::Port::new() }
8 }
9 }

10 unsafe impl xdevs::aux::Bag for TransducerInput {
11 fn is_empty(&self) -> bool {
12 true && self.in_gen.is_empty() && self.in_proc.is_empty()
13 }
14 fn clear(&mut self) {
15 self.in_gen.clear(); self.in_proc.clear();
16 }
17 }

Lines 1 to 4 specify all the ports comprising the model input set. Additionally, lines 5 to 9 define a constant
function to create new instances of this structure. Finally, lines 10 to 17 implement the unsafe trait Bag

for the TransducerInput structure by propagating the method call to all its ports (note that, as shown in Fig-
ure 1, the struct Port<T, N> implements the unsafe trait Bag). After defining the TransducerInput

and TransducerOutput structures, the macro generates the following code for the struct Transducer:

1 pub struct Transducer {
2 pub input: TransducerInput,
3 pub output: TransducerOutput,
4 pub t_last: f64, pub t_next: f64,
5 state: TransducerState,
6 }
7 impl Transducer {
8 pub const fn new(state: TransducerState) -> Self { /* Omitted for brevity */ }
9 }

10 unsafe impl xdevs::aux::Component for Transducer {
11 type Input = TransducerInput;
12 type Output = TransducerOutput;
13 ... /* Omitted for brevity */
14 }
15 unsafe impl xdevs::aux::PartialAtomic for Transducer {
16 type State = TransducerState;
17 }
18 unsafe impl xdevs::aux::AbstractSimulator for Transducer {
19 fn lambda(&mut self, t: f64) {
20 if t >= xdevs::aux::Component::get_t_next(self) {
21 <Self as xdevs::Atomic>::lambda(&self.state, &mut self.output);
22 }
23 }
24 ... /* Omitted for brevity */
25 }
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As shown in lines 1 to 6, the struct Transducer comprises input and output fields of type
TransducerInput and TransducerOutput, respectively. It also contains the t_last and t_next fields
to keep track of the simulation time internally. Finally, it also has a state field of the data type defined
in the macro call (in this example, TransducerState). Recall that the macro does not generate the state
type and must be defined by the user before calling it. Lines 7 to 9 show that the struct Transducer also
has a constant function to create the model. Next, lines 10 to 14 implement the unsafe trait Component

for the model. Note that it sets the Input and Output associated types of the model to TransducerInput

and TransducerOutput, respectively. If these structures did not implement the unsafe trait Bag, the
compiler would trigger a compilation error at this point. Finally, as the struct Transducer corresponds
to an atomic model, the component! macro implements the unsafe trait PartialAtomic to select its as-
sociated type State properly. It also implements the unsafe trait AbstractSimulator according to the
DEVS abstract simulation algorithm for atomic models. Note how line 21 forces the struct Transducer

to implement the trait Atomic. Otherwise, it will result in a compilation error. This trait specifies the
actual behavior of the atomic model, and users must implement it according to their use case.

3.1.2 Coupled Models

For coupled DEVS models, the component! macro expects the components and couplings fields. If we
wanted to generate the GPT model presented in Figure 2, the macro call would look as follows:

1 xdevs::component!(
2 ident = GPT,
3 components={generator: Generator, processor: Processor, transducer: Transducer,},
4 couplings = {
5 generator.out_job -> processor.in_job, processor.out_job -> transducer.in_proc,
6 generator.out_job -> transducer.in_gen, transducer.out_stop->generator.in_stop,
7 }
8 );

This model does not have input or output ports. Thus, the GPTInput and GPTOutput structures automatically
generated by the macro are empty structures that implement the unsafe trait Bag. On the other hand, the
struct Generator contains one field for each subcomponent, as shown in line 4 of the following snippet:

1 pub struct GPT {
2 pub input: GPTInput, pub output: GPTOutput,
3 pub t_last: f64, pub t_next: f64,
4 generator: Generator, processor: Processor, transducer: Transducer,
5 }
6 impl GPT {
7 pub const fn new(generator: Generator, processor: Processor,
8 transducer: Transducer) -> Self { /* Omitted for brevity */ }
9 }

10 unsafe impl xdevs::aux::AbstractSimulator for GPT {
11 fn lambda(&mut self, t: f64) {
12 if t >= xdevs::aux::Component::get_t_next(self) {
13 xdevs::aux::AbstractSimulator::lambda(&mut self.generator, t);
14 xdevs::aux::AbstractSimulator::lambda(&mut self.processor, t);
15 xdevs::aux::AbstractSimulator::lambda(&mut self.transducer, t);
16 }
17 }
18 ... /* Omitted for brevity */
19 }
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Again, the macro implements a constant constructor function for the coupled model to enhance compile-time
optimizations (lines 6 to 9). As the struct GPT is not an atomic model, it does not implement the unsafe

trait PartialAtomic, and the logic of its implementation of the unsafe trait AbstractSimulator

(lines 10 to 19) corresponds to a coordinator in the DEVS abstract simulation algorithm. Note how, in
lines 13 to 15, this implementation explicitly propagates the fn AbstractSimulator::lambda call to each
subcomponent of the DEVS model. It also forces all these subcomponents to implement the unsafe trait

AbstractSimulator. Otherwise, it will not compile.

3.2 Real-Time Simulator

The xDEVS no_std simulation engine is designed as a tool to develop CPSs that follow the DEVS specifi-
cation. It acts as a lightweight RT kernel of the running embedded system. In this context, we must provide
a DEVS simulation algorithm that i) translates simulation time to wall-clock time, ii) allows us to map ex-
ternal interrupts of the embedded system to input events of the model to alter the simulation, iii) allows us
to map output events of the model to different tasks that the CPS may execute, and iv) adapts to different
hardware constraints. The struct Simulator of xDEVS no_std provides the method fn simulate_rt

to meet all these requirements. Figure 3 represents a workflow diagram of the simulation algorithm. The
function takes five input parameters: the model under study (model), the initial and final simulation times
(t_start and t_stop), a closure to wait for internal and external events (wait_until), and a closure to
translate output events into other actions (propagate_output). Closures are anonymous functions that can
capture values as private variables that persist in every call [12], hiding implementation-specific details un-
der a common interface. Note that, when interacting with the model, the simulator can only use the trait

AbstractSimulator, which provides a common interface for atomic and coupled models.

Initially, the simulation time t is set to t_start. The simulation time of the first internal event is given by
the fn start method of the DEVS component. Next, the simulation algorithm enters the simulation loop.
We refer to each iteration of this loop as a simulation step. Once the simulation time reaches t_stop, the
algorithm exits this loop, executes the fn stop method of the component, and terminates the execution. In
every simulation step, the algorithm first executes the wait_until closure. This closure expects two input
arguments: the simulation time of the next expected internal event and a mutable reference to the input bag
of the model. This closure translates the next expected simulation time into wall-clock time and pauses the
execution of the simulation until this time. However, if an external event occurs, the closure may inject
input events into the input bag and return ahead of schedule. In any case, it returns the new wall-clock time
translated into simulation time, t. Note that t must be less than or equal to t_next_internal.

If t is less than t_next_internal, the algorithm checks if the model received any input event, and if so, it
executes the model’s state transition function, fn delta. Alternatively, if t is equal to t_next_internal,
simulation time advanced until the next expected internal event. Therefore, the algorithm must execute the
model’s output function, fn lambda, before executing its state transition function. Note that the algorithm
calls the propagate_output closure every time it executes fn lambda. This closure receives an immutable
reference to the model’s output bag, allowing it to execute arbitrary code outside of the simulation as a
response to the output events.

4 USE CASE

This section illustrates how to use xDEVS no_std to develop CPSs on embedded systems. The DEVS
model used to illustrate how this tool works is the Processor Transducer (PT) model, a modification of
GPT that removes the generator atomic model. Figure 4 shows a schematic of the proposed model. This
model receives new jobs to be processed through the PTin port. Incoming jobs are sent to the processor and
transducer models, which behave exactly as in the GPT model. Now, the stop message sent by the transducer
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Start

model: impl AbstractSimulator
t_start: f64
t_stop: f64

wait_until: impl FnMut(f64, &mut model::Input) → f64
propagate_output: impl FnMut(&model::Output)

t = t_start
t_next_internal = model.start(t_start)

yes

no
t < t_stop ?

t_until = min(t_next_internal, t_stop)
t = wait_until(t_until, model.get_input_mut())

yes

no
t < t_next_internal ? model.lambda(t)

propagate_output(model.get_output())

t_next_internal = model.delta(t)

model.stop(t_stop)

End

nomodel.get_input()
.is_empty() ?

yes

Figure 3: Real-time simulation workflow diagram.

is sent outside the model via the PTout port. We use a button and an RGB Light Emitting Diode (LED) to
illustrate the different ways xDEVS no_std can interact with the hardware of a CPS. Users can inject new
jobs into the model by pressing the button. Event injection is handled by the wait_until closure. The state
transition functions of the processor model control the red LED to indicate whether the processor is busy.
Alternatively, the propagate_output closure will turn on the blue LED when the transducer model sends a
stop message. Finally, the system will turn on the green LED once the simulation stops.

The platform in this use case is a SparkFun RED-V Things Plus, a development board that integrates a
Freedom E310-G002 RISC-V microcontroller. The source code for this use case is publicly available in
GitHub [16] together with a demonstration video and more examples. Figure 5 shows the hardware configu-
ration. It comprises an RGB LED with its corresponding ballast resistors and a mechanical button. The LED
is connected to digital pins 0 to 2, configured as non-inverted outputs. Alternatively, the button is connected
to digital pin 9, configured as a pulled-up input pin.

Implementation details on the wait_until closure are hardware-dependent, and each platform must imple-
ment its logic. In this case, we followed an interrupt-driven approach that allows the embedded system to
sleep between simulation steps. To do so, we use the board’s Core Local Interruptor (CLINT) peripheral to
schedule machine timer interrupts at the wall-clock time corresponding to the simulation time of the next
expected internal event. Alternatively, each time the button is pressed, the Interrupt Service Routine (ISR)

https://github.com/iscar-ucm/riscv-xdevs
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Transducer (T)

Processor (P)

Turns on red LED if busy
 (via state transitions)

PTin Pin Pout

Tout

Tgen

Tproc

PTout

Button presses
(via wait_until)

Turns on blue LED
(via propagate_output)

Figure 4: Schematic of the proposed Processor-Transducer (PT) model.

B1
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LB
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RR (150 Ω)

RB (91 Ω)

RG (91 Ω)

GND

D2

D1

D0

D9

(a) Schematic of the circuit. (b) Platform under test.

Figure 5: Hardware used for the use case.

assigned to this input sets a static atomic flag, PRESSED, to notify the wait_until closure. Figure 6 shows
a workflow diagram of this closure proposed for this use case. First, it translates the simulation time of
the next expected internal event to the corresponding tick of the CLINT’s mtime register. This register is a
monotonic clock that increases its value by one at a frequency of 32.768 kHz. Next, it checks if the button
has been pressed or if CLINT reached the expected tick. If not, it configures the CLINT’s mtimecmp register
to cause a timer interrupt as soon as the mtime register reaches next_tick and executes the RISC-V’s wfi
instruction to wait for an interrupt to occur. When a button press is detected, PRESSED is atomically cleared
and wait_until pushes a new message to the input port of the PT model. After receiving an interrupt, the
closure disables CLINT interrupts and returns the simulation time corresponding to the current system tick.

In the proposed example, we set the time required by the processor to process a new job, TP, to 2.1 s.
Alternatively, the transducer monitoring window, TT , is 10 s, and the simulation finishes after 15 s. Figure 7
shows a timeline of the RT simulation of the model under study. A video with the shown behavior is available
on Archive. Button interrupts are represented as yellow crosses, while gray crosses correspond to CLINT
timer interrupts. Input events injected by the wait_until closure are displayed as green dashed arrows, and
output events handled by the propagate_output closure are blue dashed arrows.

Initially, the wait_until closure schedules a timer interrupt at the end of the transducer’s observation win-
dow (i.e., t = 10s). However, we press the button at t = 4s. The wait_until closure wakes up earlier
than expected and injects a new job into the model’s input port. As a result, the processor turns on the red

https://ia601209.us.archive.org/28/items/annsim24_demo/annsim24_demo.mp4
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t_next: f64
input: &mut PT::Input
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next_tick = t_next * CLINT::freq()
t_next_internal = model.start(t_start)

yes
PRESSED.compare_exchange(true, false) ?

CLINT::mtimecmp().write(next_tick)
CLINT::mtimer_enable()

riscv::asm::wfi()

CLINT::mtimer_disable()
current_tick = CLINT::mtime().read()

input.add_value()
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CLINT::mtime().read() < next_tick ?

no

current_tick < next_tick ?

return
t_next

return
current_tick / CLINT::freq()

wait for event

Figure 6: Workflow diagram of the wait_until closure for the proposed use case.

light LED to inform the user that it is busy processing this new job. While the processor is busy, it ignores
any input job. At t = 4+TP = 6.1s, CLINT’s timer causes an interrupt, and the simulation resumes. The
processor is free again and turns off the red LED to notify that it now accepts incoming requests. In the
example presented, we press the button again at t = 9s, keeping the processor busy (and the red LED turned
on) until t = 11.1s. However, CLINT’s timer raises an interrupt earlier at t = 10s because the transducer’s
observation window finished. The transducer stop message is received by the propagate_output closure
and consequently turns on the blue LED. As the processor is still busy, the red LED is still on, and the RGB
LED remains magenta until the processor finishes processing the job and turns off the red LED. Finally, the
LED remains blue until t = 15s, when simulation finishes. To inform users of its termination, green LED is
turned on, showing a cyan color.

5 CONCLUSIONS AND FUTURE WORK

Integration of M&S methodologies in the design, implementation, and analysis of complex systems can
significantly improve the quality and robustness of the resulting solution. Furthermore, approaches such
as HIL simulation enable M&S tools to support the implementation, operation, and automation of modern
embedded systems and CPSs. In this context, we present xDEVS no_std, a novel implementation of the
xDEVS framework developed in the no_std environment of the Rust programming language.

xDEVS no_std offers a user-friendly, high-level API that automatically analyzes the model to ensure com-
pliance with the DEVS formalism at compile time. It also benefits from Rust’s data ownership model to
facilitate the creation of safe, high-quality code. This tool does not rely on dynamic memory allocators to
build models, leading to better predictability of the execution and making it suitable for safety-critical ap-
plications. Furthermore, it avoids making any assumptions about the hardware running the model, allowing
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Figure 7: Timeline of the use case.

for the development of multi-platform models adaptable to different architectures and specific requirements.
To demonstrate the potential utility of xDEVS no_std in developing modern embedded systems, we pre-
sented a use case involving a RISC-V microprocessor that uses the RT simulation algorithm of xDEVS
no_std. This use case adopts an interrupt-driven methodology, effectively managing external interrupts by
converting them into simulation input events. The system can also execute arbitrary code in response to
simulation output events. In any case, the algorithm ensures that the wall-clock time is synchronized with
the simulation time to deliver reliable results.

In future work, we will integrate xDEVS no_std with a Real-Time Operating System (RTOS). RTOSs are
effective in orchestrating the concurrent execution of multiple tasks in embedded systems while ensuring
that these tasks meet their timing deadlines. We believe that a collaboration between xDEVS no_std and
an RTOS will offer substantial advantages in designing and testing embedded software in safety-critical
applications. Additionally, we plan to investigate using abstract time bases to provide modelers with the
flexibility to decide how simulation time is represented. This feature is particularly beneficial for platforms
that lack dedicated hardware support for floating-point arithmetic. On the other hand, we want to extend
xDEVS no_std to allow nested coupled models. Currently, coupled models must be owners of their sub-
components. This approach does not support nested coupled models, as the size of such structures cannot
be known at compile time. We will overcome this limitation by allowing subcomponents to be mutable ref-
erences. Unlike raw pointers, only one mutable reference to a given data structure can exist simultaneously.
Finally, we will study the limitations that xDEVS no_std may face in terms of scalability as the complexity
of the model increases. Although the DEVS models we expect to develop for embedded systems will not
present complex topologies, it will be interesting to assess how a stack-only simulator performs compared
to state-of-the-art dynamic memory-based solutions.
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