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ABSTRACT 

Manufacturing an expanding number of diverse product variants while also enabling rapid responses to 
changes in the production schedule requires flexible production structures such as job shop production. 
Managing the resulting multitude of heterogeneous material flows leads to high complexity in production 
control. Hence, advanced dynamic scheduling methods based on simulation and reinforcement learning 
(RL) agents are required. These systems are confronted with changes in the production environment and 
unplanned disruptions, forcing the agent to handle deviated applications that require an adjustment. This 
paper presents an evaluation concept for a necessary retraining of production scheduling using a powerful 
control interface. The concept is based on the determination of an evaluation logic using logistic target 
values. By systematically analyzing changes in the production configuration in detail, respective production 
scenarios are compared with each other, deriving decision rules for the requisite retraining of the agent. 

Keywords: job shop production, reinforcement learning (RL), production planning and control, advanced 
scheduling methods. 

1 INTRODUCTION 

Production control is considered one of the most relevant operational problems in production and its 
importance becomes recognizable once again when advanced remanufacturing processes complement 
conventional production to increase profits or in terms of environmental regulations [1, 2]. In contrast to 
production planning, which designs the general production content and processes, production control 
manages the actual order processing and sequencing [3]. One specific production control task is order 
release, which transfers orders from the planning level into the production, controlling the amount and the 
selection of orders [4]. From this point on, the planning is applied in the operative system. 

Currently flexible production structures, e.g. job shop production, are essential to produce an increasing 
number of different product variants while at the same time being able to quickly react to changes in the 
production program [5, 6]. However, individual production processes for different components lead to a 
high number of inhomogeneous material flows [7]. In particular, the running production must be efficiently 
controlled, while at the same time, production planning must ensure that the right orders in the right 
sequence support the subsequent work plans [8]. Consequently, these requirements must be supported by 
advanced scheduling methods, where the task of order release shows a high influence on the planning 
quality to obtain high adherence to delivery dates. To cope with the challenges, dynamic methods 
combining simulation to suitably model complex production relations and reinforcement learning (RL) to 
learn specific strategies are a growing research field for solving production scheduling. [9] 

RL approaches require a training phase, in which the RL algorithm interacts with a specific simulation 
environment [10]. However, production is confronted with changes in the production configuration and 
unplanned disruptions like machine breakdowns or personnel shortages. As a result, the underlying 
conditions in the running production system may increasingly deviate from those in a training phase. In 
practice, these disruptions are met by manual reprioritization and editing of running orders [11], while for 
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approaches based on RL, it remains unclear if an already trained agent still meets the requirements or 
whether extensive retraining is required. Therefore, to ensure a high quality of the order release decision 
under occurring deviations, the algorithm's result must be continuously monitored to it must be decided 
when and to what extent an RL algorithm needs to be retrained in an appropriately adapted simulation 
environment. 

Therefore, this paper presents an evaluation concept to decide, which occurring changes in a production 
system result in a necessary retraining of an RL agent used for production control. This concept is based on 
the determination of an evaluation logic using logistic target values. A systematic analysis of changes in 
the production configuration serves as a basis for comparing production scenarios with each other to derive 
decision rules for the requisite retraining. In addition, this approach integrates a powerful control and 
evaluation interface. This work is organized as follows: In section 2, the theoretical background of RL and 
its application in production planning and control is given. A review of order release strategies considering 
classic and AI-based approaches is presented in section 3. The evaluation concept for agent monitoring is 
described in section 4, including the control and evaluation interface and a validation of the metric. Finally, 
in section 5 the work is concluded and important aspects for further research are declared. 

2 THEORETICAL BACKGROUND 

In this section, the general principle of RL algorithms is introduced by explaining the problem formulation 
and the main elements. Then, their application as a tool for production planning and control is motivated 
and brought into a larger context. 

2.1 Introduction and Functionality of Reinforcement Learning 

RL is one main machine learning method that, in contrast to supervised or unsupervised learning, integrates 
feedback from its environment into the learning cycle [12]. The aim is to identify appropriate solutions for 
sequential decision problems by maximizing a cumulative reward function. In particular, RL algorithms 
solve discrete-time Markov Decision Problems (MDP), in which a future state only depends on the 
combination of a state and an action performed a time step before. MDPs consist of four parts – a state 
space representing the current status of an environment, an action function defining possible actions for 
each state, a transition function that describes the shift from one to another state and a reward function 
modeling an expected reward. [13] The interaction procedure between an RL algorithm, called the agent, 
and its counterpart the environment, often depicted by a simulation model, is shown in Figure 1. 

 
Figure 1: Principle of a reinforcement learning algorithm [14, 15]. 

At each discrete time step 𝑡, the agent observes the environment, represented by its state 𝑠!	𝜖	𝑆, where 𝑆 is 
a set of possible states (state space). Based on that observation, the agent decides on an action 𝑎!	𝜖	𝐴, where 
𝐴 is a set of possible actions (action space), which causes the environment to switch its state from 𝑠! into 
𝑠!"#. This transaction results in a specific reward 𝑟! received by the agent, which will be maximized over 
time into a total reward 𝑅! = ∑ 𝑟$%

$&!  based on the specific objective. [15] During this procedure, the agent 
refines its policy 𝜋!(𝑎|𝑠) based on the actions it performs on specific states and what reward it gets from 
those actions [13]. 
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To apply this principle to a specific problem, the state and action space as well as the reward function need 
to be formulated on an appropriate level of detail. Time steps can be fixed or depending on specific events, 
actions can range from low-level control of one parameter to high-level decisions and states as well as 
variate from one sensor signal to the states of a complex system. Then, the reward function, which depends 
on the design of the other two sections, ranges from simple objectives maximizing the total makespan to 
complex pre-processing procedures including domain knowledge and additional constraints. 

Although a simulation model is typically used to represent the environment, RL algorithms can be 
distinguished by their interaction with this model. The algorithm is model-based when the simulation model 
itself is used to better understand the problem and forecast the next possible states. Model-free algorithms 
cannot access the model itself. They observe the values representing a state, choose an action based on it 
and receive a reward. This corresponds to a trial-and-error principle to learn an appropriate strategy. [15] 

2.2 Application of Reinforcement Learning in Production Control 

Applying RL-based approaches in production planning and control (PPC) is a state-of-the-art research field 
[9, 16] and has been considered in previous papers [14, 17]. This section introduces RL used in PPC in a 
broader context while section 3 looks into specific RL approaches in more detail. As explained in section 
1, this is particularly true for flexible production structures such as job shop production.  

The job shop scheduling problem (JSP) is a mathematical problem formulated precisely to solve production 
control tasks. For a given set of orders and machines, it is determined when which order is to be processed 
on which machine with regard to the optimal fulfillment of specified company goals. [14] By its definition, 
the JSP allows it to be formulated as MDP [18] and hence to be solved with the method of RL. Model-free 
RL approaches in particular have proven to be suitable for JSP as not always parameterized expert 
knowledge is available while a simulation model to simply represent the state space can be considered as a 
precondition [19]. Also because of its possibilities to be used in changing environments, a lot of attention 
has been paid to the application of RL to the JSP due to unpredictable adjustments and unplanned machine 
downtimes as a characteristic of production systems [16]. Those characteristics as well as a complex system 
architecture are symptomatically for manufacturing systems which is why the resulting process uncertainty 
has to be considered as a black-box problem [20]. 

In previous works, the authors identified three potential problems associated with a practical application of 
RL-based approaches in order release. First, a limitation in addressing problem sizes, with a predominant 
focus on small instances involving 3 to 15 machines, often avoiding authentic production data. Although 
the utilization of artificial or open-source data sets aids in meeting training data requirements, it falls short 
of providing solutions to real-world challenges. Additionally, the prevalent objective of minimizing 
makespan overlooks considerations such as adherence to delivery dates or capacity utilization. Finally, the 
absence of a well-defined application setup impedes the development of algorithms, lacking considerations 
for realistic shop floor conditions and a pronounced emphasis on logistical target values. [14] 

3 RELATED WORK 

This section reviews classic approaches and current work on the order release task. The related work is 
classified based on the used methods and for RL-based approaches, an overview of existing evaluation 
methods is given. 

3.1 Literature Review on Order Release Methods and Categorization 

For many years, order release methods have taken a major role in PPC literature due to continuous 
improvements and newly developed methods using advancements of mathematical techniques as well as 
computing resources. A set of classical approaches combined with heuristics and AI-based methods are 
differentiated. 
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3.1.1 Classic Approaches and Heuristics 

A distinction is made between a total of four basic order release mechanisms, three of which can be regarded 
as real procedures and one contains the immediate order release directly after the order has been created 
[21, 22]. The other procedures are scheduled order release, load-limited order release and inventory-
regulating order release. The scheduled order release (SOR) determines specific release dates per order at 
which they are released into production regardless of the utilization or inventory, e.g. backward scheduling 
[21, 23]. The release time can be determined in various ways, e.g. through given intervals, based on order 
or production information [24]. The second mechanism is load-limited order release or workload control 
(WC), which releases orders based on the current utilization of the shop floor without considering specific 
due date information [23]. Orders in this category can be divided into two dimensions: First, the aggregation 
of workstations determining the utilization value e.g. overall production, specific workstations or a 
bottleneck machine and second, the border used e.g. upper or lower limit [22]. The last mechanism 
comprises inventory-regulating order release methods, releasing orders when the number of orders in 
production that are either in the queue or being processed falls below or exceeds a predefined limit [21]. 

The proposed classification already includes methods, commonly referred to as heuristics, which try to find 
general rules rather than considering a specific state of production. Examples used in praxis are WC 
regarding the bottleneck machine and constant work in process (Conwip), an inventory-regulating method 
often indicating the referred inventory level behind, e.g. “Conwip 50” for 50 orders in process  [21]. 

3.1.2 AI-based Approaches 

With a focus on the respective objective of a learning-based system, the presented classical methods and 
heuristics have been extended by more advanced ones [25]. In particular, those approaches can be divided 
according to a data science perspective into artificial neural networks, fuzzy logic and evolutionary 
algorithms [9]. As comprehensive overviews of the most relevant learning-based approaches have been 
given already in previous papers [17], the most important ones are given in the following examples.  

Most RL algorithms solving production scheduling tasks are based on model-free approaches and use single 
agents interacting with simplified PPC environments [26]. Others like [27], however, use a combined 
approach of dynamic scheduling for manufacturing components by combining the Monte Carlo Tree Search 
method, a multi-agent Deep Q-Network and a clustering of production orders in a comprehensive system 
architecture. Production orders are represented individually or as a group of similar orders by a separate 
DQN agent in order to enable a larger observation space. Then, the total lead time is optimized. [27] 

Another recent approach covers a dispatching decision in a job shop production with multiple operations 
for each order, but the RL agent also uses Q-learning to fulfill its main objective of maximizing total lead 
time by deciding whether to use its self-determined sequence or a simple heuristic available for this 
selection. A validation against other dispatching rules has shown, that RL applications for dynamic 
scheduling become more beneficial when complexity increases in production, although a very small 
problem size has still been selected. [2] A larger problem size of eight machines using a comparable 
experimental setup has been introduced by [28]. Again, a single RL agent solves the dispatching problem 
in a job shop production minimizing average waiting times to shorten the lead time while keeping utilization 
high. As also found in the solutions introduced by [29] and [27], small problem size and the objective of 
minimizing total lead time is a regular application form leading to the shortcomings of practicability in 
terms of the industry need for higher adherence to delivery dates, because this reflects the actual perceived 
benefit [14, 26]. 

The majority of approaches use Q-learning in their method as identified in both the referenced literature 
reviews and the selected examples, but it is more frequently applied to the dispatching problem. However, 
since the order release decision already takes place in the preliminary stage of production control and, as 
described, has a major influence on adherence to delivery dates even before short-term disruptions have to 
be resolved by dispatching, the focus here remains on order release. The problem remains that small 
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quantities of production instances are used, which leads to the problem that the approaches solve the 
problems mathematically, but the scalability cannot yet be proven. 

3.2 Evaluation Concept 

Although several RL-based approaches include a validation of their method, only a few provide a 
comprehensive basis for decision-making regarding the context of changes in production between the 
training and application phases within an evaluation concept. These approaches mainly focus on the 
evaluation of general requirements covering the production environment and practicability as well as order-
specific requirements mostly aiming at logistical target values. In addition, there exist approaches that make 
overarching comparisons and evaluations of order release strategies [30]. Finally, if new methods are 
applied to existing problems – such as RL in the context of PPC – those must be evaluated not only in terms 
of the result of the solved application but also in terms of the method itself. Therefore, RL-specific 
requirements must be included to evaluate the execution of the RL method: A basic measure is the ability 
of agents to learn a rewarding strategy in the context of simple decision problems. The efficiency of 
exploration measures how efficiently the agent can improve its strategy by trying out new actions. [31] The 
optimality gap is presented by [32] measuring the distance between the reward achieved by the agent and 
a specified minimum score. Finally, the duration of the decision-making process must be considered as an 
order release system must be able to quickly react in case of changes or disruptions.  

The analysis of existing approaches has shown that they are suitable either for the evaluation of the decision 
result for the order release task or regarding the application of the RL method. An approach that combines 
both categories and establishes the connection between RL applications and order release procedures could 
not be found. 

4 APPLICATION 

This section introduces the RL agent used in this work and presents the methodology for monitoring the 
agent’s decision quality and decision on necessary retraining efforts. Then, a development and evaluation 
interface is presented that allows for rapid validation. 

4.1 Introduction of the Used Reinforcement Learning Agent and Simulation 

On the basis of the RL agent introduced by [33], it has been further improved by [14] (see Figure 2), solving 
shortcomings addressed in section 2.2 – problem size, objective regarding adherence to the delivery date 
and practical implementation.  

 
Figure 2: Used simulation and RL set-up [14]. 

The approach uses two discrete-event material flow simulation models on a machine and order basis. One 
simplified simulation in SimPy is used for the training phase (see stage II) modeling the main production 
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resources and relationships for the training phase to keep the data transfer between simulation and agent in 
training within the python environment. The application phase then switches to a more realistic simulation 
in Plant Simulation (see stage III) including statistically distributed machine breakdowns and order 
cancellations, the agent must deal with. This also requires a socket connection between the agent and the 
simulation model, which links the two components and enables communication. Using this kind of socket 
connection leads to a higher time requirement for training and testing. As a result, an average decision step 
in the Plant Simulation set-up takes approximately 25 times longer than in the SimPy environment. As the 
focus has been set on order release, for the operating sequence of each machine the first-in-first-out (FIFO) 
rule is implemented in both models as a simplified assumption. In this example, the job shop production of 
a component manufacturer is modeled in both simulations (see section 4.3). 

The state space 𝑠! is represented by the state vector providing the agent with information to decide on its 
next action. Here, work plans and machine lists are initially loaded into the simulation environment, 
whereas machine and order status renew every time step: General information comprises the current 
episode and simulation time. The machine status includes availability, remaining processing time of queue 
and current order. The order status stores the allocated and downstream machines as well as processing 
times and due dates. Dependent action space is selected here, where jobs are directly chosen to be released 
or not released at each time step [14] instead of approximating durations as [33]. An order pool is 
introduced, initially filled with pending orders and prioritized by the due date, where each action has an 
index corresponding to the index of an order. In addition, a "no-op" action is introduced, representing the 
possibility of not releasing an order. The reward function focuses on maximizing adherence to delivery 
dates by using the difference between the remaining time until the due date and the remaining process time 
[14]. 

4.2 Methodology for Agent Monitoring 

One disadvantage of learning-based approaches is that the strategy learned cannot be formalized, or only 
with great effort, which means that the decision-making process remains non-transparent [34]. In the event 
of deviations in the agent's performance, assessing causes is difficult. One possible cause is a discrepancy 
between the initial training environment and the current application. As real productions are subject to 
dynamic changes these deviations must be continuously monitored to assess whether the agent needs to be 
re-trained. The methodology comprises an evaluation system that quantifies the quality of the decision 
outcome of an RL agent and derives rules to assess whether retraining is necessary. It is based on existing 
models (see section 3.2) and resolves the identified shortcoming by evaluating key figures regarding 
production and logistics as well as methodically relevant key figures on the application of RL algorithms. 
The four steps of the methodology including a continuous control loop is shown in Figure 3. 

 
Figure 3: Methodology to evaluate the quality of order release decisions. 
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4.2.1 Determination of the Evaluation Logic based on Logistic Target Values 

The first step involves determining key figures to evaluate the performance of the approach against 
conventional order release methods and specifications of the RL algorithm. The logistical target values 
according to [35] and [36] are used as key production figures: Lead time, adherence to delivery time, order 
delay and capacity utilization. The lead time is a central objective of a successful PPC. It measures the 
average time between the release and completion of an order and has a direct influence on on-time delivery 
as well as the accumulation of inventories [21]. Important, market-related criteria include the adherence to 
delivery date indicating the percentage of delayed orders (in case of a difference of more than one day) and 
the order delay calculated from the root mean square of delay in days of all delays orders. By using the 
quadratic mean, the distribution of the delay is taken into account to provide a more reliable value for the 
average delay. Utilization is an important key figure for evaluating the capacity and production efficiency 
It indicates the percentage use of production resources and sets the actual output about the target output. 
With an increasing number of variants achieving high machine utilization becomes more difficult, so it 
must be included in the consideration. 

The two indicators optimality gap [32] and decision duration are selected to evaluate the algorithm figures. 
The optimality gap measures the distance between the reward achieved by the agent in a test versus the 
specified minimum score achieved when testing the agent in the original production environment. In 
addition, the decision duration plays an important role in production practice as it must be quickly able to 
react to changed conditions. It measures the time an agent needs to solve a complete simulation problem. 

4.2.2 Analysis of Changes and Deviations in the Production Configuration 

In the second step, the framework conditions that influence the production configuration are derived from 
the literature [37]. A distinction is made between planned changes in production and unplanned deviations 
that lead to a difference between the training and application environment. Both are divided into the 
categories of production process, order and production resource as listed in Table 1. 

Table 1: Overview on planned changes and unplanned deviations. 

Type Category Parameter 
Planned changes Production process Changed sequence rule 
 Order Set-up and processing time change 
 Production resource Number of similar machines 
  Machine production time 
  Machine operating days 
Unplanned deviations Production process Quality problem 
  Incorrect logistic process 
 Order Product, demand time, volume change 
  Prioritized, cancelled order 
  Material availability 
 Production resource Machine breakdown 
  Personnel availability 

 

Planned changes describe intended adjustments, such as the sequence rule, that can be deliberately changed 
for each machine to change the processing queue. Set-up and processing times can be adjusted in the course 
of process optimizations or new tools and impact the total completion time. The last group of planned 
changes relates to production resources, where the number of similar machines, the machine production 
time and the machine operating days can change. Unplanned deviations are disruptions that affect the order 
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release process, are unintentional and can occur suddenly. Here, quality problems are included as dominant 
causes of disruptions and reworking activities. Incorrect logistic processes, e.g. incorrect scheduling of 
materials and tools, incorrect order picking or a lack of internal logistics vehicles, also negatively influence 
the production flow. Moreover, orders are subject to changes, e.g. added urgent orders that require 
prioritized processing or canceled orders that must be deleted from the planning basis. Product changes 
may lead to completely different production processes. Finally, machine breakdowns and understaffing can 
occur for various reasons and last for uncertain length reducing the production capacity. 

4.2.3 Creation and Evaluation of Respective Production Scenarios 

The third step involves the actual evaluation of the decision results, in which scenarios are simulated, 
evaluated and compared to each other. Based on the collection of changes and deviations in 4.2.2, problems 
that occur in a given production can be aggregated into a new scenario (adapted scenario). In addition to 
the initial scenario and the adapted one, a third scenario is built, which contains the same changes but uses 
a different order release method (comparative scenario). For this purpose and in the considered scenario, 
Conwip 50, scheduled order release (SOR) based on backward scheduling and workload control (WC) (see 
section 3.1.1) have shown the best results and are consequently chosen, whereby for each parameter the 
best-performing method is selected.  

If there is a deviation in the agent’s performance in the second scenario, detailed individual evaluations are 
necessary to identify the main impact. To carry this out, further scenarios are generated that consider each 
change or disruption individually. For the individual scenarios, the orders are released once by the agent 
and once by the best comparative method. There are then two scenarios (agent and comparative method) 
for each change and deviation. To minimize the effort involved, the individual scenarios are not generated 
upfront, but only on demand using the decision hierarchy in Figure 4. Critical deviations are assessed 
according to each key figure, which are detailed in the next section. 

  
Figure 4: Overview of the decision hierarchy. 
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deviation (1), a relative negative deviation smaller than five percent (2) and a critical relative negative 
deviation higher than five percent (3). 

The classification into three categories is carried out individually for each of the six evaluation criteria and 
then aggregated into decision rules to make a holistic evaluation. Since a high-quality decision result can 
only be achieved by holistic fulfillment of all criteria, these are weighted equally. The decision hierarchy 
(see Figure 4) is used to determine the extent of necessary retraining. Based on the comparisons between 
the agent’s result and those of a comparative method, the extent to which retraining is necessary is 
identified. The degree of retraining is divided into complete retraining and retraining of individual changes, 
keeping retraining effort to a minimum.  

4.2.5 Integrated Control and Evaluation Interface 

In addition to the four main action steps, the developed methodology has a control loop, which is created 
by repeating steps 3 and 4. This is intended to ensure a consistently high quality of the decision result. The 
control loop is embedded into the control and evaluation interface presented by [7], which supports 
automated pre-processing of the raw production data, manages different projects and scenarios and provides 
an integration into the simulation and python environments to handle all instances in just one tool. Thus, 
important simulation support such as pre-assignment of scenarios to fill production with existing orders in 
a realistic way and simulation of experiment instances for visualization are integrated into the tool. Finally, 
comparing the different scenario types by their respective key figures helps to quickly decide on necessary 
decisions for a running order release system. 

4.3 Validation of the Metric 

For validation, the knowledge gained in steps 1 and 2 of the methodology is used to create an adapted test 
scenario from the initial scenario. A job shop production scenario including ten machine types and a total 
of 76 orders to be released within the simulation time of three months is used as an initial scenario. Again, 
a FIFO principle is applied as the default sequencing rule before each machine. The discrete-event 
simulation then models the flow of the orders that already preoccupy the machines and orders that are 
released within simulation time. The changes made in the adapted scenario are aggregated in Table 2. To 
include unplanned disruptions, the simulation environment Siemens Plant Simulation provides the 
possibility of statistically distributed disruptions such as machine breakdowns modeled through reduced 
resource availabilities. 

Table 2: Considered adaptions to the initial scenario. 

Type Parameter Initial scenario Adapted scenario 
Planned Sequence rule FIFO LIFO 
 Set-up and processing time  Selected modifications 
 Number of similar 

machines 
 3 machine types reduced by 

1-2 instances 
 Machine production time  Changed shift system 
 Machine operating days  Changed availability times 
Unplanned Machine breakdown 100% availability Reduced availability 

 

Then, by applying the agent trained in the initial scenario to the adapted scenario, the following deviations 
regarding the key figures can be observed (see Table 3). The adapted scenario shows a critical deviation in 
three key figures (lead time, utilization and order delay). In addition, a deviation below the threshold value 
of 5% is recognizable for the adherence to the delivery date and optimality gap.  
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Table 3: Comparison of basis and adapted scenario. 

Key figure 
(opt. direction) 

Initial 
scenario 

Adapted 
scenario 

Deviation Comparative 
scenario 

Deviation 

Lead time [d], ↓ 4.1 5.7 + 39.0% 4.3 (WC) + 4.9% 
Utilization [%],↑ 29.1 24.6 - 15.5% 34.8 (WC) + 19.6% 
Adh. to deliv. date [%], ↑ 86.8 85.5 - 1.5% 88.2 (WC) + 1.6% 
Order delay [d], ↓ 9.6 10.3 + 7.3% 10.1 (WC) + 5.2% 
Optimality gap [%], ↑ 0% -0.9% - 0.9% / / 
Decision time [s], ↓ 31.0 31.0 +/-  0.0% / / 

According to the decision hierarchy (see Figure 4), a critical deviation in at least one evaluation criterion 
requires the comparison against comparative scenarios based on different order release methods. In this 
configuration, WC has shown the best results for the respective figures. Industry standards for this kind of 
production for the utilization range around 50%, for adherence to delivery date between 80% and 90% and 
order delay between three to ten days. Lead time can be best benchmarked with the net operation times 
which range between a few minutes and a few hours and cumulate differently according to the lot size and 
shift model. According to the recommendations, complete retraining is necessary in this case, taking into 
account all changes and disruptions, as three of six key figures are considered critical for both the adapted 
scenario against the initial scenario and against comparative scenarios. 

5 CONCLUSION AND FURTHER RESEARCH 

This paper elaborates on an evaluation concept for learning-based order release systems to decide if an 
underlying RL agent requires retraining in the course of changes to the production configuration. It presents 
a four-step methodology for monitoring the decision quality using key figures regarding production and 
algorithm performance. After introducing the problem definition of job shop scheduling and identifying 
shortcomings of current evaluation approaches for RL-based production control approaches, the 
methodology is described in detail and validated in a real production example using a comprehensive 
development and evaluation tool. 

The methodology solves the problem that real productions are usually confronted with continuous changes 
and unplanned disruptions to which specific, learning-based approaches cannot react without adjustment. 
In particular, it evaluates whether and to what extent retraining in an adapted initial scenario is necessary. 
By systematically analyzing possible changes and disruptions in the production configuration, comparative 
scenarios are generated and evaluated against each other, deriving specific decision rules for retraining of 
a RL agent. These range between a complete retraining process, minor adjustments in the training scenario 
or the decision that no retraining is necessary. The focus of further research remains on a practical 
formulation of the reward function and action space of considered RL agents in order release. This makes 
it possible to be used for realistic production sizes and to efficiently outperform existing methods. Also to 
meet the challenge that learned strategies can only be formalized with great effort, it is an accomplishment 
to derive rules from the behavior of a RL agent to enrich production knowledge. 
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