

ANNSIM ‘23, May 23-26, 2023, Mohawk College, ON, CANADA; ©2023 Society for Modeling & Simulation International (SCS)

A HIGH-PERFORMANCE DEVS SIMULATOR FOR MULTI-GPU PLATFORMS

Guillermo G. Trabes

Department of Systems and Computer Engineering

Carleton University

and Universidad Nacional de San Luis

1125 Colonel By

Ottawa. ON, K1S 5B6, CANADA

ABSTRACT

As Discrete Event Systems Specification (DEVS) formalism is increasingly adopted across various fields,

simulations become more complex and time-consuming. To improve the performance of DEVS

simulations, we propose a parallel algorithm designed for modern high-performance platforms with

multiple GPU devices. Our approach guarantees a simple, error-free parallel execution. We also present

experimental results demonstrating that our approach can accelerate a real-world problem up 14.13X using

one GPU and up to 22.89X using two GPUs, compared to sequential execution.

Keywords: simulation, DEVS, high-performance computing, GPU, Multi-GPU

1 INTRODUCTION AND BACKGROUND

Discrete Event System Specification (DEVS) (Zeigler et al. 2000) is a known mathematical formalism

commonly used for modeling complex systems in a modular and hierarchical way. DEVS enables the mod-

eling of problems by coupling atomic and coupled models, connecting them in a hierarchical structure. In

DEVS, users combine these two types of models, coupled (providing structure) and atomics (providing

behavior), to define their models, and there are general mechanisms that execute the simulations. To sim-

plify the hierarchical structure, we can flatten it, resulting in a structure with only one coupled model that

maintains all atomic models and couplings defined by the user. From there, we create a PDEVS Abstract

Simulator structure, consisting of a root-coordinator at the top of the tree structure, one flat-coordinator

component, and one simulator for each atomic model. To execute simulations on this structure, there is a

well-known algorithm: the PDEVS Simulation Protocol. Although DEVS provides a general mechanism

to execute simulations, when dealing with large and complex DEVS simulations, we need better techniques

to execute them efficiently. In the past, several techniques have been proposed to execute DEVS simulations

in parallel, including those from the Parallel and Distributed Simulation (PADS) field. However, only a

few of these algorithms can execute correct simulations in all circumstances. In (Zeigler 2017) a new ap-

proach was proposed, that uses the PDEVS protocol's inherent parallelism in the execution of output and

state transitions execution. This idea was extended with more parallelism in multicore architectures in Tra-

bes et al (In press).

2 PARALLEL PDEVS SIMULATION PROTOCOL ON MULTI-GPUS

In this work we improved previous approaches on the parallel execution of the PDEVS simulation protocol

by adapting it to modern high-performance platforms, composed by multicore central processing units

(CPUs) and several graphics processing units (GPUs). Our algorithm parallelizes the execution assigning

different functions to CPU threads, where each thread is responsible to execute on a different GPU. We

assign to each thread a subset of the simulators and each their functions on a GPU. In Figure 1 we can see

a summary of this algorithm, which repeats until the simulation finishes. After each task in the simulation,

Trabes

Figure 1: Parallel PDEVS Simulation Protocol.

the threads synchronize to guarantee the completion of each task before starting the new one. This way we

achieve to deploy the algorithm on all GPUs in the system, and they all collaborate on the execution of the

simulations. To evaluate our , we implemented a parallel version in C++ using the OpenMP and CUDA

libraries. We experimented with an epidemiological problem (White et. al 2007) modeled with the Cell-

DEVS formalism. We evaluated a model with one million cells and executed it increasing the number of

simulation steps. The experiments were executed on platform with two NVIDIA 1660 GPUs. Our approach

achieved a significant speedup of up to 14.13X with one GPU and up to 22.89X with two GPUs compared

to the sequential version run on a dual Intel Xeon E5-2609V4 multicore CPU. In comparison, the multicore

parallelization with 16 cores on the same computer provided only a 3.03X acceleration.

3 CONCLUSIONS AND FUTURE WORK

In this work we presented an algorithm to execute DEVS simulations in multi-GPU platforms. The

experimental results show that simulations can execute several times faster than the sequential version and

scale when using more GPUs. As future work, we plan to implement this extend this approach to execute

on distributed computers with multi-GPU nodes.

ACKNOWLEDGMENTS

This research was conducted in collaboration with my PhD supervisors, Dr. Gabriel A. Wainer and Dr.

Veronica Gil-Costa.

REFERENCES

Trabes, G. G, G. A. Wainer, and V. Gil-Costa. (In press). “A Parallel Algorithm to Accelerate DEVS

Simulations in Shared Memory Architectures”. IEEE Transactions on Parallel and Distributed Systems.

White, S. H., A. M. Del Rey, and G. R. Sánchez. (2007). Modeling Epidemics Using Cellular Automata.

Applied mathematics and computation 186(1):193–202.

Zeigler, B. P., H. Praehofer, and T. Kim. 2000. Theory of Modeling and Simulation. 2nd ed. Orlando, FL,

USA: Academic Press, Inc.

Ziegler, B. P. 2017. “Using the Parallel DEVS Protocol for General Robust Simulation with Near Optimal

Performance”. Computing in Science and Engineering 19(3):68-77.

1. E ecute outputs : ROO COORD NA OR calls

e ecute output functionson A COORD NA OR, which calls

e ecute outputs function on e ery S MU A OR subcomponent

in parallel. Each thread e ecutes on a subset of S MU A ORs.

S MU A OR e ecutes its output function and stores it in its

outbo .

2. Route messages: ROO COORD NA OR calls route messages

on A COORD NA OR, which routes messages among atomic

models in parallel. Each thread routes messages to a subset of

atomic models. S MU A OR inserts output bag to input bag of

component if not empty.

3. E ecute transitions: ROO COORD NA OR calls

e ecute transition functions on A COORD NA OR, which

calls e ecute transition function on e ery S MU A OR

subcomponent in parallel. Each thread e ecutes on a subset of

S MU A ORs. S MU A OR chec s for imminent component

and empty inbo and e ecutes corresponding transition function.

 . Obtain ne t e ent: ROO COORD NA OR calls ne t time

function on A COORD NA OR, which obtains ne t time for

each S MU A OR subcomponent in parallel and determines

minimum alue through parallel reduction.

