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ABSTRACT 

Automatic assessments of building plans are uncommon in the early design stages, especially when 

schematic sketches are in raster format. Existing design evaluation tools, such as fire code reviewers, 

primarily evaluate vector format images that contain complete building information in the late design stage. 

These tools use conditional shape-embedding techniques to analyze the vector images. However, there are 

limitations to identifying and evaluating drawings through vector-shape relationships. Our research aimed 

to develop tools that can automatically assess schematic sketches in raster format to overcome the 

limitations of existing tools. We integrated a conditional shape-embedding tool, named Shape Machine, to 

assess vector images, with machine learning techniques to assess raster sketches. This integration enables 

the evaluation of fire evacuation sketches in the early stages of the design process, thereby improving design 

efficiency and reducing costs. Moreover, in the future, this integration could allow the evaluation of designs 

in multiple image formats. 

Keywords: Machine Learning, Shape Grammar, Design Assessment, Fire Codes, Generative Adversarial 

Network. 

1 INTRODUCTION 

When conducting detailed design, architects use various drawing tools, including schematic sketches, which 

often require file format conversion. But this conversion of sketches from raster to vector format is a time-

consuming process that can hinder the automatic review of fire codes in the early stages of design.  
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Despite the widespread use of vector image technology for detailed design and image manipulation, 

designers still prefer sketching in raster formats to express creativity during the early stages of visual 

invention (Fish and Scrivener 1990). However, existing design evaluation systems, such as VAIplus, 

SMARTreview APR, and CivitPERMIT, are limited to analyzing vector-format files, which are usually not 

available until later design phases, thus leading to a lack of early-stage review of sketches that can cause 

costly delays and expenses (Rounce 1998). In addition, late-stage building plan adjustments for fire codes 

typically require considerable collaborative revision time involving other related engineering inputs, such 

as structural and material drawings. As a result, there is a need for automatic tools that can review 

compliance with local codes during early design phases and adapt to universal formats such as JPEG, unlike 

existing fire evacuation review tools, which mainly focus on complex plans or models in later design stages.  

Our research aims to address these efficiency and image format constraints associated with building a sketch 

plan assessment for fire code criteria in the early stages of design. To assess raster format images in early 

design stages, we integrated Shape Machine, a conditional shape-embedding tool (Economou et al. 2021), 

with a Generative Adversarial Network (GAN). We accomplished this integration by identifying vector 

lines using the Shape Machine as a collection of raster colors, rendering the raster images readable by the 

GAN. To evaluate this the proposed methodology as a general-purpose tool to assess building sketches for 

different applications, we utilized the fire code checks in an early stage as a hypothetical study case. 

In our research, we review early-stage drawings in JPEG format for compliance with fire code criteria using 

image-processing technology. To accomplish this, we utilized the Code for Fire Protection Design of 

Buildings, GB 50016-2014 (2018 Edition), and floor plans of schools as examples. Our approach involved 

several steps. First, we decomposed the local fire code into six important types, which we marked with 

different colors in the early-stage sketches. Second, we translated the fire code criteria into code statements, 

particularly conditional shape-embedded rules, to enable the review of the key elements of the building 

sketch plans. Third, we used a newly developed shape detection tool based on shape grammar, called Shape 

Machine, to recognize the key elements and mark them as vectors in school plans. We marked the room 

vector lines recognized in the raster image sketches with different colors corresponding to various items in 

the fire code criteria. These raster images were then used for training the GAN. Specifically, we built a 

dataset of 300 paired images as input for training. Fourth, we trained the pix2pix GAN using the paired 

raster fire code assessment dataset color-marked by the Shape Machine. Thus, the trained model produces 

a tool for automatically reviewing architectural sketches. 

Our research revealed that the resulting network accurately recognized certain sketch plan features, 

including the distances between doors and exits. In addition, we compared the efficiency of our trained 

results with those checked by humans and observed that our network was capable of enhancing the 

efficiency of the early-stage fire code review process for sketches in the raster format.  

Furthermore, the study demonstrated that the Shape Machine can effectively extract the key image features 

from building sketch plans, whereas the GAN can assess the original sketches in raster format. The 

combination of both tools enables the recognition of incorrect survival distances and element sizes from 

images in raster format. Thus, the integration offers a more objective means of evaluating the compliance 

of early-stage design ideas with fire code standards. The use of Shape Machine and GAN machine-learning 

technologies in evaluating fire evacuation strategies during early sketch design phases can significantly 

increase design efficiency and reduce costs. In addition, this integration has the potential to enable future 

design assessments using various picture formats. Our code and dataset can be accessed through 

https://doi.org/10.2023/fire.code. 

2 RELATED WORK 

In the early stages of design, such as the schematic sketching stage, designers can benefit from using a 

wider range of tools to explore design diversity (Bueno and Turkienicz 2014; Pranovich 2004). However, 

https://zenodo.org/record/7754657#.ZBk8nC-B2ON
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this diversity can lead to various design file formats in those early stages. One possible solution to this issue 

is to review fire code criteria compliance using universal image formats that all software can export, such 

as JPEG. Using universal formats as input for reviewing plans can expand designers' capabilities in the 

early stages of sketch design.  

Existing building code review tools are typically designed to review vector-format plans in the late stages 

of design. For example, VAIplus can only check plans for fire code requirements during the design 

development and construction document phases using platforms that contain detailed information, such as 

building information modeling (BIM) and AutoCAD (Ismail, Ali, and Iahad 2017). Therefore, an automated 

review tool can enhance design efficiency with flexible requirements for universal format input in the initial 

stages of sketch design.  

Furthermore, existing fire code review tools, such as VAIplus, SMARTreview APR, and CivitPERMIT, 

are limited in terms of the review stages, review requirements, and file formats (as shown in Table 1). These 

tools typically require detailed layer-by-layer information, including plumbing and electrical information, 

which is often not available until late in the design process, resulting in costly modifications. In contrast, 

during the early stages of design, information only exists regarding the relationship between space division 

and room function, but not about material and structural layers. As a result, during the early stages of sketch 

design, when modifications can be made more cost-effectively, existing fire code tools are unable to review 

plans or provide suggestions. Thus, in the future, automatic review of early sketches could potentially 

reduce the cost of later modifications by engineers of different professions (Rounce 1998). 

Table 1: Existing fire code review tools. 

Checking Phase Platforms Fire Code Criteria Format Sources 

Design development 

/Construction 

documents 

VAIplus 
Codes for architectural, structural, and 

electromechanical design (China) 
CAD  vaiplus.com 

CivitPERMIT 
Codes for architectural, structural, and 

electromechanical design (USA) 
CAD, BIM thecivit.com 

SMARTreviewAPR International Building Code (IBC) BIM smartreview.biz 

Construction 

documents 

Glodon BIM 

Reviewer 

Codes for architectural, structural, and 

electromechanical design (China) 
BIM  glodon.com 

PKPM Codes for structural design (China) CAD, BIM  pkpm.cn 

xzst360 Codes for structural design (China) CAD  xzst360.com 

Schematic design 

/Design development/ 

Construction 

documents 

TUZHI.AI 
Fire codes for residential, public, and 

industrial buildings (China) 
pdf drawings tuzhi.ai 

 

We have integrated Shape Machine (Economou et al. 2021) and a pix2pix GAN (Goodfellow et al. 2014) 

to overcome the limitations of existing fire code review tools in assessing floor plans according to local 

building requirements. Shape Machine is a general shape grammar interpreter that follows the fluent eye-

hand, seeing-doing workflows emphasized by shape grammar formalism for vector images (Economou et 

al. 2021). It recognizes vectors, which can then be marked with raster colors for neural network recognition. 

The pix2pix GAN (Isola et al. 2018) is a machine learning tool that solves image-to-image translation 

problems in raster format with a minimal training set and supervised learning performance. GANs have 

become a well-established method in various types of design assessment, including architectural sketch 

generation (Qian, Xu, and Li 2022), architectural plan generation (Chaillou 2020), urban visual quality 

assessment (Guo et al. 2020), environment simulation (Mokhtar, Sojka, and Davila 2020), performative 
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design (Duering, Chronis, and Koenig 2020; Lorenz 2019), and design generation and recognition (Huang 

2018). Image-processing technology that utilizes machine-learning tools can assess plans and models in 

various architectural fields.  

However, studies on the use of raster image-processing technology with vector recognition grammar for 

sketch assessment, particularly with respect to fire code criteria, are scarce in the literature. By combining 

a pix2pix GAN and Shape Machine, evacuation sketches in JPEG format could be evaluated disregarding 

the vector format prerequisites and complex requirements of later design stages. Therefore, in this study, 

we examined the efficacy of the Shape Machine and pix2pix GAN in evaluating early-stage building 

sketches for fire code criteria. 

3 METHODOLOGY 

To evaluate the effectiveness of the Shape Machine and GAN integration in assessing raster format sketches 

for fire code criteria compliance, we utilized school floor plan sketches as examples. As shown in Figure 

1, our methodology consists of four steps: plan recognition, fire code translation, image format transition 

for dataset creation, and GAN training. 

 

Figure 1: Workflow of the proposed methodology involving: plan recognition, fire code translation, 

image format transition for dataset creation, and GAN training. 

3.1 Plan Recognition 

Fire codes vary depending on the type of building, such as residential, medical, and industrial. As a case 

study, we selected five-story schools with Class 1 fire resistance, no automatic sprinkler system, closed 

stairways and indoor corridors, and 250 persons per floor. We identified five key elements of school plans 

in accordance with the criteria in the Code for Fire Protection Design of Buildings, GB 50016-2014 (2018 

Edition). These five elements included the distances between doors or exits (Code 1), the number of doors 

(Code 2), the distance between room doors and exits (Code 3), the evacuation distance in each room (Code 

4), and the width of doors, exits, and corridors (Code 5). These elements were recognized as vectors using 

AutoCAD Raster Design Toolset, and their relationships were identified using Shape Machine  (Economou 

et al. 2021). 

Table 2: Example fire codes for checking function translation, cited from Code for Fire Protection Design 

of Buildings, GB 50016-2014 (2018 Edition). 

Code No. Description Item 

Code 1 

[1.1] The horizontal distance between the nearest edges of two adjacent evacuation doors in each room 

shall not be less than 5 m. 

[1.2] The horizontal distance between the nearest edges of two adjacent safety exits on each floor in each 

fire compartment in the building shall not be less than 5 m. 

5.5.2 
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Code 2 

The number of evacuation doors in a room should be determined by calculation and should not be less than 
2. For a room located between two safety exits or at both sides of the terminal of a dead-end, if the floor 

area is not larger than 75 m2, an evacuation door can be set. 
5.5.15 

Code 3 
The linear distance from the evacuation door to the nearest safety exit of the room directly leading to the 

evacuation corridor shall not be greater than those specified in Table 5.5.17: [22 m]. 
5.5.17.1 

Code 4 

The maximum linear distance from any point in the room to the evacuation door directly leading to the 

evacuation corridor should not be greater than the linear distance from the evacuation doors at two sides of 

the terminal of the dead-end to the nearest safety exit, as specified in Table 5.5.17: [22 m] 

5.5.17.2 

Code 5 

The clear width of the evacuation doors (5.1) and safety exits (5.2) should not be less than 0.9 m. The clear 

width of the evacuation corridors (5.3) and evacuation stairways (5.4) should not be less than 1.1 m. 

The aggregate clear width of evacuation doors (5.1), safety exits (5.2), evacuation corridors (5.3), and 

evacuation stairways (5.4) on each floor shall be determined according to the calculation of the minimum 
clear evacuation width for every 100 persons but not be less than those specified in Table 5.5.21-1. For a 

building with fire resistance Class I and II, if the aboveground story is not less than 4, the minimum clear 

evacuation width is 1.00 m/hundred persons. [In our case, the minimum clear width is 2.5 m for 250 

persons per floor per fire compartment, 1 in total.] 

5.5.18 

5.5.21.1 

5.5.21.2 

Code 6 

When the number of floors does not exceed four and the first floor does not adopt an enlarged enclosed 

stairwell or smoke-proof stairwell foreroom, the distance between the door leading to the outside and the 

stairwell should not be more than 15 m for the first floor. 

5.5.17.2 

 

 

Figure 2: Sketch plan recognition, fire code translation, and image format transition using Shape Machine. 

3.2 Fire Code Translation 

We used Shape Machine (Economou et al. 2021), a technology based on shape grammar, to translate the 

fire codes into code statements and review the five key elements in building plans in vector format.  

To build our dataset, the text in the fire code was translated into ten checking functions that help recognize 

vector image data in the generated plans and review their compliance with different fire code criteria (see 

Figure 2). We developed a labeling rule that used different colors to mark areas with different plan errors 

(see Figure 3). Colors with RGB values ranging from 0 to 255 were used to differentiate the labels as much 

as possible. Therefore, we used ten combinations of RGB values to label the ten types of errors 

corresponding to the different fire code criteria. If any element in the room did not meet the code 

requirements, the room was colored accordingly; for example, Room 1 in Figure 3 was labeled red (R:255 

G:0 B:0) when breaking Code 4; similarly, four tones of green (R:0 G:63 B:0, R:0 G:63 B:0, R:0 G:63 B:0, 

and R:0 G:63 B:0) were used to label width errors when breaking Code 5, setting these drawing layers 

always on the top of the others. 
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We used Shape Machine (Economou et al. 2021) to translate each code in Table 2 into the checking 

functions listed in Table 3 for the recognition process. As depicted in Figure 4, Checking Functions 1.1 and 

1.2 were used to examine whether the distance between two doors of a room or two exits was less than 5 

m. Checking Function 2 was employed to verify if there were at least two doors when the room area was 

greater than 75 m2. Checking Function 3 was utilized to check whether the shortest distance between doors 

and exits, as calculated through the Grasshopper Shortest Walk plug-in, was less than 22 m. Checking 

Function 5 evaluated whether the distance between points and doors in a room was less than 22 m. 

Specifically, Checking Functions 5.1, 5.2, 5.3, and 5.4 were utilized to review the minimum widths of 

doors, exits, corridors, and stairways, respectively. Finally, Checking Function 6 determined if the distance 

between the doors and exits of the first floor was less than 15 m. To complete all the checking functions, 

we utilized Shape Machine to recognize the vector-embedded shapes of the five elements and substitute 

them with raster colors. Subsequently, the reviewed elements were automatically color-coded in raster 

format to build a machine-learning image dataset. 

Machine translates the raster to vector for vector recognition. However, Shape Grammar can be used to 

check the drawings of vector formats based on rule-by-rule checking. This process is not only time 

consuming, but also demands significant computing.  For example, if a vector-format drawing includes 

many details, such as doors, stairs, or decorations that need to be checked, the Shape Machine—the 

interpreter of shape grammar—would have to go through all the lines. In this case, checking multiple rules 

of a floor plan would take significant time and computing, and reviewing the floor plan of a big building 

could take several hours. Therefore, to make the reviewing process more efficient we use GAN to check 

the raster drawings, which ignores the excessive vector information and enables checking multiple rules 

simultaneously. Moreover, to review raster sketches more efficiently, we integrate Shape Machine and 

GAN. 

 

 

Figure 3: Input image and checked image with color marks for nine checking functions. 
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Table 3: Translation of selected codes from Table 2 into ten checking functions. 

Code No. Checking Functions Marked 

Colors 

Checked 

Elements 

Code 1.1 def function_1_1(x): 

 return(1 if distance(x.door[0], x.door[1]) < 5 else 

0) 

R:0 G:0 

B:255 

Distance between 
doors 

Code 1.2 def function_1_2(exit): 

 return(1 if distance(exit[0], exit[1]) < 5 else 0) 

R:0 G:0 

B:127 

Distance between exits 

Code 2 def function_2(x): 

 return(1 if num(x.door)<=1 and area(x) > 75 else 0) 

R:255 G:255 

B:0 

Number of doors 

Code 3 def function_3(x): 

 return(1 if distance(x.door, exit) > 22 else 0) 

R:255 G:0 

B:255 

Distance between 
doors and exits 

Code 4 def function_4(x): 

 return(1 if distance in point_to(x.door) > 22 else 0) 

R:255 G:0 

B:0 

Evacuation distance in 
a room 

Code 5.1 def function_5_1(x): 

 return(1 if width(x.door) < 0.9 else 0) 

R:0 G:255 

B:0 

Door width 

Code 5.2 def function_5_2(exit): 

 return(1 if clear_width(exit.door) < 

clear_width(exit.stairways) or clear_width(exit.door) 

< 1.1 or sum(clear_width(exit.door)) < 2.5 else 0) 

R:0 G:183 

B:0 

Exit width 

Code 5.3 def function_5_3(corridor): 

 return(1 if clear_width(corridor) < 2.5 else 0) 

R:0 G:127 

B:0 

Corridor width 

Code 5.4 def function_5_4(stairways): 

 return(1 if sum(clear_width(stairways)) < 2.5 or 

clear_width(stairways) < 1.1 else 0) 

R:0, G:63, 

B:0 

Stairway width 

Code 6 def function_6(x): 

 return(1 if distance(exit.door, 1F exit) > 15 else 0) 

R:0 G:255 

B:255 

Distance between 

doors of stairways and 

first floor exits 

 

 

 

Figure 4: Ten checking functions and their corresponding colors. 
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3.3 Image Format Transition for Dataset Creation 

The Shape Machine and the ten checking functions were utilized to review whether the five key elements 

in the vector format images conformed to the fire code criteria. Subsequently, the reviewed elements were 

converted into raster images to build an image dataset. The resulting dataset comprised 300 pairs of 

unreviewed and reviewed raster sketch images for machine learning purposes, as shown in Figure 6. 

 

Figure 5: Procedure for recognizing vector information and translating it into raster formats using Shape 

Machine. 

 

Figure 6: Dataset of unreviewed and reviewed building plan pairs for GAN training. 

3.4 GAN Training 

We used the fire code assessment dataset, color-marked by Shape Machine using all ten checking functions, 

to train the pix2pix GAN for converting unchecked sketches (virgin raster plans) to checked sketches (color-

marked raster plans).  

The dataset was divided into a training set of 250 images and a testing set of 50 images. The network was 

trained using plan sketches as inputs and color-marked sketch plans as outputs, i.e., the program generated 

a color-marked sketch plan indicating different errors based on a given sketch plan drawing. The entire 

training process was performed on Google Colab using an NVIDIA-SMI 460.32.03 GPU. One epoch with 

250 images took 240 seconds and the full network training lasted 16.2 hours. 

To validate the effectiveness of our approach, we compared the output produced by the GAN based on real-

world school drawing inputs with the results obtained by manually applying each checking function 

Moreover, to analyze in detail the predictive efficiency and accuracy of the model, we trained the GAN 

using nine checking functions separately and asked three experienced designers to manually review each 

school plan within one minute to identify errors according to each fire-code criterion.. Subsequently, we 

averaged the efficiencies and accuracies of the experts and compared them to those of the GAN. The results 
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are summarized in Table 4. The manual accuracy reported in the table indicates the average percentage of 

all non-compliant elements effectively identified by the experts in one minute. 

4 EXPERIMENTAL RESULTS 

By generating plans using all nine checking functions, the pix2pix GAN can create an image-to-image 

translation from an unreviewed raster sketch plan to a checked one with color-coded marked fire evacuation 

risks (Figure 7), resulting in a discriminator loss of 0.71 and generator loss of 1.82. We compared the 

efficiency of our trained model with that of manual checking and found that our network improved the 

efficiency of the fire code assessment process per plan by 30% within one minute. 

To evaluate the recognition effect of different fire codes, we separately trained the pix2pix GAN using each 

of the nine checking functions. Some color markings from unreviewed to reviewed plans performed well 

in separate training, while others did not due to the varying geometric transform complexities of the plans. 

For codes 2, 3, and 4, both adversarial networks produced consistent and stabilized results (Figure 8). In 

contrast, for codes 5.1 and 5.2, the discriminator performed worse because it cannot easily distinguish 

between real (reviewed) and fake (unreviewed) plans (Figure 8). This can be attributed to the generator 

always trying to find the one output that seems most plausible to the discriminator. Therefore, while the 

GAN can correctly fill the room's original shape bits and sums and generate an appropriate color mask 

when evaluating codes like 2, 3, and 4, for codes 5.1 and 5.2, it needs to judge the evaluation method of 

color filling boundary by itself, which causes challenges in generating the corresponding masks. 

The challenges encountered when marking colors separately help determine the fire code assessment 

checking functions in which either humans or machines perform better. Specifically, when we compare the 

machine learning results with manual ones, we find that machines excel at recognizing long distances and 

complex geometries, while experienced designers are more sensitive to small- and human-scale assessments 

(Table 4). For example, by breaking down the color-marked layers, we found that machine detection of 

codes 2, 3, and 4, which evaluate the number of doors, distances between exits and doors, and room sizes, 

was over 30% more accurate than manual evaluations. However, machine detection of codes 5.1 and 5.2, 

which evaluate the widths of doors and exits, was less sensitive than manual evaluations (Figure 8).  

 

Figure 7: Results of pix2pix GAN transforming unreviewed to reviewed sketch plans with all layers. 

Table 4: Training results and efficiency evaluation. 

Code No. Marked Colors Checked Elements GAN Accuracy Manual Detected in 1 min 

Total Nine Colors All elements 0.73 0.43 

Code 1.1 R:0 G:0 B:255 Distance between doors 0.62 0.44 

Code 1.2 R:0 G:0 B:127 Distance between exits 0.88 0.25 

Code 2 R:255 G:255 B:0 Number of doors 0.46 0.61 

Code 3 R:255 G:0 B:255 Distance between doors and exits 0.75 0.16 

Code 4 R:255 G:0 B:0 Evacuation distance in a room 0.79 0.22 
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Code 5.1 R:0 G:255 B:0 Door width 0.85 0.61 

Code 5.2 R:0 G:183 B:0 Exit width 0.91 0.21 

Code 5.3 R:0 G:127 B:0 Corridor width 0.70 0.62 

Code 5.4 R:0, G:63, B:0 Stairway width 0.64 0.75 

Code 6 R:0, G:255, B:255 Distance between doors and exits 0.71 0.85 

 

 

Figure 8: Results of pix2pix GAN transforming unreviewed to reviewed plans for different layers. 

Finally, the trained GAN model was used to predict unseen floor plans to determine whether it could 

predict other sketching styles (Figure 9). The results showed that the model could provide a more efficient 

examination of different styles of plane sketches, indicating that the GAN integrated with the Shape 

Machine could more efficiently review geometrically complex school-plan features in the early sketch 

stages. 

 

Figure 9: Results of the prediction of unseen sketches using our pix2pix GAN model. 
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5 CONCLUSIONS 

This research proposes a new method that integrates Shape Machine and a GAN to assess raster building 

plans during the sketch design stage, specifically for reviewing plans according to local fire codes. As 

structured vector plans are not available in the early stages of design, we expanded our evaluation tools by 

using Shape Machine to recognize and mark key plan elements (Economou et al. 2021). The marked sketch 

plans can then be processed by the GAN to train a machine-learning model that automatically reviews the 

raster plans in the early stages of design. Our results indicate that this approach is effective for assessing 

raster images. 

Moreover, this integration serves as a bridge between vector and raster images and between fire code and 

raster images for fire code reviews. We translated the sketch information into color-marked plans using 

fire-code checking functions and a Shape Machine. This translation bridges the gap between vector and 

raster information for a more effective review of universal-format sketches. This approach assists architects 

in reviewing plans with respect to local fire codes in the early stages of design, thereby improving design 

efficiency and reducing the cost of adjusting plans in later design stages. 

Our research has limitations in terms of the size and domain biases of our dataset, and the relatively fixed 

assessment stage of the early sketch design stages. We tested only the floor plans of school buildings as an 

example, with a limited number of checking elements and sketch styles in the early stages of design, and 

selected translations of local fire codes. Our dataset contained 300 pairs of images, which limited the 

training and validation accuracy to 0.71. Thus, increasing the dataset size may improve the training and 

validation accuracy of the machine-learning model. Lastly, our experiment shows that a GAN integrated 

with a Shape Machine can be used as a rough method for evaluating sketch plans in the early schematic 

sketch design stage. However, the evaluation of complex sketch information has yet to be tested. 

Nonetheless, the proposed integration of Shape Machine and machine learning techniques provides novel 

ideas and approaches for image assessment in universal formats, particularly for the automatic evaluation 

of two-dimensional design sketches. 
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