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ABSTRACT 

This article argues that important real-world characteristics needed to guide intelligent navigation of mobile 

robot in hospital units, are not currently being captured, and as a result, acceptance of mobile robots in 

hospital environments remains low. To enhance the scope and quality of the real-world information for 

mobile robot, a co-simulation framework is proposed, combining immersive digital twin (DTS) and agent-

based simulation (ABS). This article conceptualized in-hospital mobility, developed a proof-of-concept 

system for the co-simulation, and demonstrated the co-simulation outcomes. This novel co-simulation 

framework is expected to help build a multifaceted world map as a foundational basis of intelligent 

navigation.   

Keywords: digital twin, agent-based simulation, in-hospital mobility, mobile robot.  

1 INTRODUCTION 

Physical movements, interactions, and transportation methods employed within hospital units are integral 

to care delivery. Enhanced or constrained mobility therefore directly impacts allied health personnel 

performing and patients receiving care. In-hospital mobility can be improved through ergonomic 

environment design, which yield positive outcomes to productivity and safety (u 2016). For example, 

ergonomic arrangement of components (such as facility layout and medical devices) in terms of clinical 

importance and sequence-of-use (Sanders and McCormick 1987), can help care providers obtain a clear 

line-of-sight and access resources with minimal movements. Spared trips and movements accumulated over 

number of staffs and workhours directly improve productivity; a statistical prediction model for nurse work 

demand estimates that reducing the number of cumulative steps to walk during workhours lowers the level 

of fatigue measured at the end of the shift (Brzozowski et al. 2021). Besides, streamlined mobility may also 

help reduce patients’ risks of trip and fall. However, (re)design of physical environment could be limited 

in its scope and consequences. The (re)design of hospital environments is often difficult in nature due to 

regulations with OSHA guidelines. 

Alternatively, a more fundamental solution is to use mobile robots to take over some or all of the tasks on 

hospital units that involve highly repetitive or strenuous physical movements such as patient transfer, 

handling, and monitoring, or service activities associated with cleaning, maintenance, and logistics. For 

example, more than 850 man-hours are being spent on a weekly basis in a 500-bed hospital by nurses for 

transfer of goods, samples, and medical wastes. 
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These tasks do not add clinical value to patient outcomes (Ozkil et al. 2009). Despite a broad range of 

applications demonstrated over the past decade (Siegwart, Nourbakhsh, and Scaramuzza 2011), acceptance 

of mobile robots in hospital environments remains low (Ramdani et al. 2019); and more than 40% of 

innovative technologies including robots have failed or have been abandoned in the last two decades 

(Greenhalgh et al. 2017). The COVID-19 pandemic and the soaring needs to carry out disinfection, 

cleaning, and other increased logistic services, do not appear to have significantly improved the acceptance 

of mobile robots (Sierra Marín et al. 2021).  

In fact, developing mobile robots to address mobility issues in hospital environments poses unique 

challenges not shared with other application domains. Mobile robots are generally expected to move 

without assistance from external human operators through its “intelligent” abilities to determine actions to 

complete a task (Siegwart, Nourbakhsh, and Scaramuzza 2011). Navigation is at the core of those intelligent 

abilities (Rubio, Valero, and Llopis-Albert 2019), fulfilling the functional tasks of generating a model of 

the environment (i.e., world map) by mapping sensor information, computing a collision-free trajectory, 

and moving along the trajectory. Optimal path planning (Raja and Pugazhenthi 2012) in a classic sense, 

which is to determine a collision-free path from a start to a goal point while minimizing travel distance (or 

in rare occasions, time, or energy), is only a basic ability needed for navigation in hospital settings. Yet the 

ability never guarantees acceptance by a heterogeneous group of care providers, staff, patients, and families. 

Imagine a mobile robot attempting to pass through a narrow hallway occupied by slow-walking mobility-

aided patients and simultaneously an emergency team racing to transport a critical patient on a stretcher. 

Will people under such a situation accept the robot as a dependable companion as long as it keeps a moving 

along a collision-free path? For teamwork and collaboration with a mobile robot, what do care providers 

and staff expect of the robot mobility behaviors? Observing how people perceive and respond to mobility 

issues in hospital (Andersen et al. 2009; Fisher et al. 2011; Pavon et al. 2020), a truly intelligent solution 

would necessitate the robot to consider the entire systems of physical and cultural environment, 

administrative support structure, expectations of mobility roles, and teamwork for coordination and 

cooperation (Stutzbach et al. 2021). 

A first step to tackle the complex navigation of healthcare mobile robot is to build and update an 

information-rich representation around mobility environment or world map, which contains key layers of 

systemic information about physical, institutional, and cultural environments, as well as dynamic 

information about stakeholders (i.e., people on the hospital floor, their roles, and tasks), teamwork, and 

safety issues. To that end, the current article proposes a co-simulation-in-the-loop approach that integrates 

digital twin (DTS) (Kim et al. 2022) and agent-based simulation (ABS) (Huang et al. 2018) for a mobile 

robot control in the loop, so this novel co-simulation framework serves to build a multifaceted world map 

as a foundational basis to formulate an intelligent navigation solution.  

This article conceptualized, developed, and demonstrated initial outcomes of the proposed co-simulation. 

Section 2 provides ground works to identify healthcare-specific requirements for in-hospital mobility, and 

then overviews the trends of mobile robot navigation, so that building a comprehensive and context-rich 

world map is justified. Section 3 proposes key rationales for the development of DTS-ABS co-simulation. 

Section 4 details the methods of implementation for DTS and ABS, and then their integration for co-

simulation. Section 5 discusses clinical implication of the co-simulation results and derives expected 

components needed for the world map, based on which mobile robots of the future can navigate in a truly 

acceptable manner.    

The proposed co-simulation framework applied to the intelligent robot navigation planning in hospital units 

is new in terms of its concept (i.e., incorporating work-related knowledge in navigation planning), method 

(i.e., combining digital twin and agent-based simulation for predictive performance modeling), and 

application (i.e., seeking strategies to help robots be better accepted and streamlined into the healthcare 

workflows).   
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2 GROUND WORKS 

2.1 Evolution of Mobile Robot Navigation 

A mobile robot’s planning for in-hospital navigation is well beyond an optimization problem that uses a 

computationally efficient algorithm to generate valid navigation paths not interfering with obstacles (Raja 

and Pugazhenthi 2012). Collision avoidance is just one of many requirements typically imposed on mobile 

robot applications. To reliably carry out navigation, mobile robot is expected to demonstrate the following 

intelligent abilities (Rubio, Valero, and Llopis-Albert 2019):  

• Perception: The robot can use its sensors to acquire information about the environment.  

• Localization and mapping: The robot maintains the information of its position and configuration 

within the environment.  

• Cognition: The robot can decide on its best course of action for navigation path, trajectory, and 

motion.   

• Motion control: The robot can specify its forces on the actuators to achieve intended navigation 

outcomes.   

Similar to the cases in human intelligence such as perceptual judgment, proprioception, and motion imagery 

(Gazzaniga, Ivry, and Mangun 2002), those four abilities are not clearly distinct with one another; 

strengthening or impairing one ability (e.g., perception) could enhance the others (e.g., localization and 

mapping). It is because of the common component that weaves through all underlying abilities in robot 

navigation, which is information about the “world”, including the navigation environment, objects, people, 

and the robot itself. 

Accuracy of the world information is crucial for localization (not only tracking the robot’s absolute position 

in the environment, but also its relative position with respect to other people and objects), map 

representation, cognition, and motion control. Thus far, a wide array of sensors, systems, and methods have 

been developed to enhance the accuracy for mobile robot (Borenstein et al. 1997; Rubio, Valero, and Llopis-

Albert 2019). Still, despite ongoing research activities, important real-world characteristics are not well 

represented in the world information for mobile robots, which substantially limits their acceptance and 

perceived trust among people who work around them. A potential pitfall of amplifying data to enhance the 

world information is computational complexity that ripples through map representation, cognition, and 

motion control (Rubio, Valero, and Llopis-Albert 2019). The pursuit of higher resolution and multimodality 

in sensing could be limited in this regard. Besides, sensor-oriented geometric and kinematic data is only a 

fraction of the world information that humans process to perform their real-world tasks. Taking a driving 

task, for example, human drivers easily consider multiple layers of real-world information such as traffic 

rules and pedestrian behaviors, well beyond the longitudinal and lateral control of the car.            

The key rationale of this article is thus, to enhance the scope and quality of the world information, through 

the proposed co-simulation approach, up to high-level information about work system and society, so the 

robot navigation in hospital environment under diverse realistic scenarios will comply with workflows, 

organizational protocols, and even ethical rules. It is a viable solution to fulfill the requirements of diverse 

stakeholders and complicated work system protocols, so mobile robot can be better accepted.           

2.2 Key Characteristics and Axioms for In-Hospital Mobility 

The recent extensive review calls for systemic approaches to contrive solutions for in-hospital mobility 

(Stutzbach et al. 2021). This systems-oriented view can broaden the scope of the world associated with 

mobility, and also helps identify key information elements needed to be represented in the world map. 

Suppose that redundant commands are routinely issued (and then cancelled) by multiple clinicians for a 

mobile robot to navigate back-and-from a stock room. An intelligent navigator may want to seek more 

information around those navigation calls, learn that the lack of communication among clinicians is the 
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main cause of redundant calls, and as results, inform all related clinicians of an incoming navigation call 

before it starts to move. In this fictitious scenario, the world information needed for intelligent navigation 

is the list of recent calls, related clinicians and their work activities, which help understand the motivation 

and risks behind each navigation call.         

Based on the in-hospital mobility literature (Lucas and Benson 2019; Kortebein 2009; Pavon et al. 2020; 

Fisher et al. 2013, 2011; Koenders et al. 2020; Stutzbach et al. 2021), the following axioms are derived to 

characterize in-hospital mobility. Although the literature primarily focused on patient mobility, the axioms 

were generalized to include mobility of all stakeholders in hospital, including clinicians, nurses, staffs, 

patients, and families, regardless of mobile robot use: 

1. Mobility Expectation axiom: A call to navigate between two disjoint points on hospital floor is 

initiated by the set of hierarchical expectations from among individual stakeholders, clinical unit, 

hospital management, healthcare system, and society; see the healthcare systems hierarchy in Figure 

1. A completed navigation call may align with, indifferent, or contradict each one of the expectations 

in the hierarchy.     

2. Mobility Execution axiom: The specific manner to execute a navigation call such as role (i.e., who 

is responsible for this navigation call) and priority, are determined by physical environment, 

workflow, infrastructure, resources, and culture, and those multi-factors span the healthcare systems 

hierarchy. 

3. Mobility Coordination axiom: A team approach to communicate, coordinate, and cooperate on a 

navigation call produces better outcomes in terms of mobility performance and addressing 

contradictory expectations.   

 The three axioms defined will be further elaborated in the co-simulation approach proposed in the next 

section. Our co-simulation is expected to provide mobility-related, context-rich information about the world 

(e.g., mobility stakeholders’ expectations, physical environment, workflow, resources, and culture), as to 

build the world map representation as the future basis of intelligent navigation behaviors.     

3 PROPOSED APPROACH: CO-SIMULATION FOR WORLD MAP REPRESENTATION 

3.1 Digital Twin Simulation (DTS) of Human-Robot Interaction (HRI) in Hospital  

Digital twin originally refers to a broad set of “virtual information constructs that fully describes a physical 

manufactured product” in the context of product life-cycle management, so that valuable information about 

the physical product can be obtained cost-effectively from its digital replica (Grieves 2014). Following 

literature on DTS has focused on creating and maintaining a highly accurate representation of the physical 

counterpart through bidirectional information exchange between the physical and digital twin (Khan et al. 

2018).  

Figure 1: The healthcare systems hierarchy associated with in-hospital mobility.  
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Contrary to predominantly physical products in manufacturing domain, healthcare DTS requires to expand 

the scope of simulation that includes people of different roles, data, equipment, and personnel training 

outcomes. Motivated by the vision to represent a full breadth of human-robot interaction (HRI) in intensive 

care unit (ICU), the authors’ prior work developed a proof-of-concept DTS in virtual reality (VR) by 

integrating robot operating system (ROS) with the Unity3D VR platform (Kim et al. 2022). Currently, the 

DTS continues to expand in its scope by incorporating other simulation components related to HRI at ICU, 

including a simulated electronic medical record (EMR).  

3.1.1. Navigation of a Mobile Robot 

This article used a two-wheeled mobile robot provided by the OhmniLabs Inc. For navigation, the robot 

uses a built-in 2D LiDAR sensor for localization. The robot control system uses two built-in communication 

channels to first receive a navigation command from a remote operator via a web application (NativeJS), 

and then to translate it to the corresponding low-level servo and motor-control (ROS docker image). A 

default navigation scenario is manual operation; a human operator remotely decides on the paths and 

configures its movement. For advanced navigation scenarios, the article used the OhmniLab’s specialized 

TB Control ROS node to communicate with the DTS running in Unity3D. This connection of the physical 

robot with DTS permits flexibility in control sources, so that either a physical (i.e., human operator) or 

virtual entity may take over navigation. Further pushing the boundaries of the virtual entity leads to artificial 

intelligence (AI) for autonomous navigation.   

3.1.2. Immersive Digital Twin Simulation (DTS)  

The immersive DTS, or Extensive Simulation (Kim et al. 2022), aims to create a highly realistic digital 

replication of human-robot interaction (HRI) that simulates, not only physical appearance and dynamic 

navigation of mobile robot, but also human behaviors arising from interacting with the robot. The concept 

of immersion broadly refers to an “objective description of reality delivered by technology” that appeals to 

the sense of human with an “inclusive, extensive, surrounding, and vivid illusion” (Slater 2009). Healthcare 

domain has long adopted immersive simulation, predominantly for the training and evaluation of clinical 

skills, problem solving, and judgment (Rosen 2008).  

This proposed integration of digital twin with immersive simulation may potentially overcome the 

fundamental limitation of current DTS in configuring human-robot collaboration (Kousi et al. 2021), which 

was to disproportionately concentrate on robot configuration only while neglecting human’s adaptability 

(Miller et al. 2005), perhaps due to the lack of statistically-reliable information about humans at work. 

Immersive DTS can facilitate knowledge discovery of emergent human behaviors by placing user(s) in a 

highly contextualized situation. It also helps collect a large set of activity instances on a given virtual ICU 

environment and scenarios to help generalize on human actions, and further derive statistically-valid human 

models.       

3.2 Agent-Based Simulation (ABS) to Gain Insights on HRI 

Agent-based simulation is a variation of discrete-event simulation, aimed at describing the behavior and 

interaction of “agents”, or autonomous entities, which can perceive its environment, make decisions, and 

adapt behaviors over time (Law, Kelton, and Kelton 2007). Human-robot interaction (HRI) in hospital 

settings is particularly suited for analysis using the ABS; according to the Mobility Execution and 

Coordination axioms in Section 2.2, people or mobile robot on the hospital floor is likely to interact with 

one another and adapt their own mobility behaviors based on perception of the environment and the other 

agents, rather than moving as preprogrammed.  

There are many simulation platforms to implement the ABS, including Simio, AnyLogic, Aveva, and 

FlexSim. This article chose FlexSim for its advantages of healthcare focused simulation features and the 

ability to simulate flexible trajectories. FlexSim is particularly useful in finding an optimal navigation path 
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because of its built-in A* algorithm (this algorithm works using weighted graphs; starting from an initial 

node from a graph, it builds a tree of paths starting from that node, explores the possible paths one step at 

a time until one of its paths ends at the targeted node (Rubio et al. 2009).   

3.3 Co-Simulation of DTS and ABS  

The immersive DTS reproduces a digital-twin robot (a real-time digital representation of physical robot 

including its appearance and navigation), user group interactions (collected through VR headset and 

wearable sensors), and the hospital environment (designed in VR to represent an actual care environment).  

DT and ABS co-simulation have been used to monitor healthcare departments’ current state in real time, 

current and future states according to predictive simulation, and future states (Moyaux et. Al, 2023). This 

article showcases an example use case studying patient flow in the emergency department. The DT shows 

the current state of the physical twin (PT) while ABS allowed users to run various replications and what-if 

scenarios (Barat et. al, 2019) 

3.4 Co-Simulation-In-The-Loop for Navigation Control 

As envisioned in Section 1, the co-simulation outcomes will enhance the scope and quality of the world 

information needed for intelligent navigation. An advanced mobile robot will, thus, navigate with this co-

simulation in-the-loop. Such hybrid system framework is at a very early stage (Huang et al. 2018), and has 

potential for cost-effective systems synthesis.      

4 CO-SIMULATION IMPLEMENTATION 

This section presents details of system architecture and implementation methods and illustrates key 

simulation results.   

4.1 Immersive Digital Twin Simulation (DTS) Architecture 

The Unity3D engine provided the main platform for developing the digital-twin environment. Its integration 

with the ROS through the TCP Connector and Endpoint packages enabled implementation of the immersive 

DTS. Particularly, the ROS integration allowed for the bidirectional connection for data flow and control 

commands; see Figure 2.  

For the reference of physical environment, the Jump Simulation Center located at the University of Illinois 

Urbana-Champaign campus was accessed by the authors. It is a high-fidelity simulation facility designed 

Figure 2: Digital Twin Simulation Architecture for 

a Mobile Robot. 
Figure 3: Illustration of immersive 

digital-twin simulation. 
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for experiential medical education. Particularly, access to the ICU, patient rooms, nursing station, and 

hallway allowed the authors to fully replicate the hospital environment including ventilator, bed, patient 

monitor, and simulated patient; see the top panel in Figure 3. It also allowed for serial testing without 

interference of bed placement, disrupt discharge, or admission processes that would otherwise be timely 

and costly in actual hospital settings. Comparative testing of the robot navigation in physical versus digital 

environment (the middle and bottom panels in Figure 3) shows minimal discrepancies; average time delays 

during a 5-minute simulation session were only less than 10 milliseconds. In Figure 3, the hospital layout 

is digitally replicated for VR (top left); a nurse’s catheterization task supported by the robot’s catheter kit 

delivery (top right); physical versus digital twin for robot navigation on the hallway (middle), and robot 

positioning for patient monitoring (bottom). 

4.2 Agent-Based Simulation (ABS) Implementation 

FlexSim was used for the implementation of the ABS. The platform requires specifying the dimensions of 

the hospital environment including wall thickness. The dimensions were estimated from the layout in the 

top left of Figure 3. Since decimals are not accepted for the dimension input in the FlexSim, the simulation 

dimension was upscaled by a factor of 10. There are 4 patient rooms and a storage room, which were utilized 

to simulate the real-world DT application with the ABS. The real-world DT application utilized 3 patients 

with scheduled activities and healthcare professionals, which allowed for a baseline in the simulation 

atmosphere. The patients’ names are Martha, Sonia, and John. Martha has been in the center after an injury 

while Sonia and John are newly admitted patients, as can be seen in Table 1. That does not include all 

patient events and shows a sample of the patient timeframes. 

Table 1: Patient scenarios. 

11 pm 11:02 11:04 11:06 11:08 11:10 11:12 11:14 11:16 

Sonia 

admitted 

to unit 

Initial 

history and 

assessment 

   Oxygen 

85%, 

alarms 

ringing 

Ask 

robot 

to call 

nurse  

Asks 

robot to 

call 

physician 

for orders   

Ask robot 

to call 

physician 

for vaso-

pressor 
 

Figure 4 shows the patient scenarios from Table 1 built out. Laymen terms are utilized to provide easier 

readability in the patient process flows. The simulations process flow shows staff moving throughout the 

center. For instance, in Figure 4, the robot/cobot is obtaining towelettes that will then be later used to clean 

the patient with the health care tech (HCT). A process flow was created for each patient to show their care 

in the HCES.  

Currently, only 1 registered nurse (RN) is available, so when the other patients are admitted to the unit pre-

emption will be utilized to give priority to certain patients. Pre-emption will be useful when a patient with 

severe health conditions requires attention. 

Figure 4: FlexSim patient scenarios. 
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Table 2: Agent based simulation (ABS) input elements. 

Simulation 

component 
Related subcomponents/ properties/ variables 

Source 
- Front Door 

- Arrival Style: IAT, Arrival Schedule, Arrival Sequence; distribution; table lookup 

Queue 

- Front Desk 

- Queue max content limits the number of patients checking in or in the waiting area 

- Output: use transport of nurse 

Room (Inpatient/ 

Outpatient/ ICU) 

- Processor: a) Max content: the number of patients in room (1). b) Setup time. c) Process 

Time: i) Distribution. ii) Table Lookup. iii) Use operators (robot and nurse) to perform tasks.  

- Output: a) Utilized to allow patients to leave room. b) Used transport of nurse. 

Sink Leave center 

Monte Carlo 
- Multiply the sample from the DT 

- Replications 

Table 2 defines simulation components, associated subcomponents and properties, used to implement the 

ABS for the hospital units. The simulation outcomes include work-in-progress (WIP), travel distance for 

robot and human agents, and throughput in the system.  

4.3 ABS Outputs 

The outputs of the ABS provide accurate results as the durations of patient activities are timed, 

dimensioning of the HCES is implemented and equipment are to scale. With the use of experimentation, 

studies can be evaluated such as the number of staff available, staff priorities, and time to complete tasks.  

With the use of the DT and ability to experiment with mannequins, scenarios and experiments can be studied 

further.  

Figure 5 shows a dashboard of values to be tracked instantaneously. In this figure, the distance traveled of 

staff members are tracked.  The average state of each staff member is also recorded to see when they are 

acquired by another patient or available. The availability of staff will be useful for staff allocation. The 

patients’ average time in state is also recorded as receiving direct care or being idle. Lastly the model 

throughput tracks patients leaving the center. With experimentation this simulation can be run various times 

to see the average throughput of patients and their utilization. 

4.4 ABS Results 

Although the build of the simulation is not yet complete, results can be taken from FlexSim reports and 

dashboards like Figure 5 to compare to the DT real-world application. These results can show the optimal 

travel paths of staff, utilization of resources (staff, storage rooms, etc.), patient care utilization and much 

more.  

Figure 5: Output results of simulation. 
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4.5 DTS-ABS Integration 

The DTS-ABS integration implements co-simulation and analytics services within the simulation platform; 

the combined simulation approach is proposed between the ABS implemented in the FlexSim and the digital 

twin platform created within the Unity. The coordination between Unity and FlexSim is achieved via an 

SQL Database and a Webserver with general system architecture as follows: The connection between Unity 

and a robot with a standard Robot Operating System (ROS) distribution was demonstrated (Kim et al. 

2022). From Unity, web requests are made to a webserver that communicates with the shared SQL database. 

Data from Unity can then be shared with FlexSim as input to various agent-based simulations. The results 

from such simulations are then sent back to Unity for further decision making within the digital twin. 

The ABS provides an interface to input the high-level organizational policies of the hospital into a 

simulation which can then inform lower-level control models. For instance, various robotic kinematic 

models can be tested within the ABS to minimize distance traveled of human agents, decrease patient 

waiting time, and maintaining safe nurse utilization and patient-to-nurse ratios as per the safety guidelines 

and policies of the hospital organization. As a result, changes to the current robotic kinematic model can 

gradually be deployed and validated within the DTS. Real-time updates facilitated by the DT can then 

inform further optimizations to the kinematic model along with capturing new input data for the ABS such 

as updates to the world map. These updates will help guide the robot in navigating the physical environment 

when choosing the optimal path. 

5 DISCUSSION: ESTABLISHING WORLD MAP  

5.1 Clinical Implication for the World Map 

The co-simulation framework is expected to generate various metrics related to agent activities on hospital 

units, shedding light on productivity. The below are examples of the metrics:  

• Average number of nurses available 

• Average time in hospital units spent on different tasks or units 

• Average waiting time for clinicians/ to see a nurse 

• Average travel speed of robot 

Utilizing the aforementioned metrics to navigate the robot, the robot’s autonomous movement replicates 

the movement of a nurse or an allied health care professional that is participating in patient care. Replication 

of navigation during patient care and in patient care units will provide insight into active travel distance, 

time required in travel, stationary time spent doing direct patient care or charting, time spent in stationary 

time, and idle time where no activities are occurring. This granular description will provide objective 

measurement to depict patient acuity and level of care required, and efficacy of physical layout and traffic 

flow of patient care units. This information will improve utilization of human resources through 

Figure 6: System architecture to combine immersive digital-twin and agent-based simulation.   
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complementary patient care assignments to maximize nursing skills and time and increase patient safety 

and reduce resource fatigue, as well as design of patient care units to maximize use of human resources. 

6 CONCLUSION  

The current work proposed a co-simulation approach combining immersive digital twin (DTS) (Kim et al. 

2022) and agent-based simulation (ABS) to support intelligent navigation of mobile robots in hospital units. 

This article conceptualized, developed, and demonstrated initial outcomes of the proposed co-simulation. 

This co-simulation framework is expected to help build a multifaceted world map as a foundational basis 

to formulate an intelligent navigation solution. For a scalable solution, more robust simulation architectures 

are needed be explored to mitigate latency, increase reliability, and harden security (Zeb et al. 2022; Lu et 

al. 2021; Mashaly 2021; Huynh et al. 2022). The implementation of real-time agent-based simulation with 

a digital twin requires to addressing it. Additionally, optimizations would need to occur based on medical 

situational awareness as certain types of data would have higher priority than others when it comes to the 

dimensions of latency, reliability, and security. While solutions have been proposed within manufacturing, 

healthcare digital twin solutions will require further exploration, testing, and common metrics for 

comparing different digital twin solutions, each having their own advantages, disadvantages, and features. 

This will be explored in future research. In future research, the ABS will be utilized to run experiments by 

changing the parameters for the number of staff available, patients receiving care, and the robot assistance 

level. This information can be useful to see how parameters affect the travel path of staff members and 

patients. Lastly, by adding longer sessions for the evaluation of the simulation, the number of errors will be 

reduced by ensuring the simulation is as close to the real world as possible.  
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