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ABSTRACT 

It has been widely acknowledged that technical building performance can be influenced by many uncertain 

factors such as weather, scenarios, occupant behavior, simulation parameters, and numerical methods. For 

objective and reproducible performance assessment, the aforementioned uncertainties must be reflected in 

the performance simulation analysis. With this in mind, the authors present a stochastic assessment of model 

predictive control (MPC) performance of a variable refrigerant flow (VRF) cooling system for an office 

space. The office space was modeled using EnergyPlus and surrogated models were employed for MPC 

studies. It is found that the energy savings by MPC can be highly stochastic, ranging from 0.3% to 20.4% 

depending on weather data. In addition, it is noteworthy that MPC intelligently takes different control 

strategies (high COP vs. drifting) under different weather conditions.  

Keywords: model predictive control, uncertainty, artificial neural network, variable refrigerant flow 

system, objective performance assessment.  

1 INTRODUCTION 

Model predictive control (MPC) has been widely used in the building industry due to its energy saving 

potential. MPC determines optimal control variable(s) that minimize a cost function for a given prediction 

time horizon (Afram, and Janabi-Sharifi 2014). According to DOE (2015), MPC can enhance energy 

efficiency by up to 30% without upgrading existing appliances. Liang et al. (2015) implemented MPC of 

an air handler for multi-zone VAVs for 9 days (01 Jul.-09 Jul.) and achieved energy savings by 25.7%. Ma 

et al. (2012) saved the energy consumption of a VAV system by 24.31% for 7 days in July. As reported in 

many MPC studies (IBPSA 2001-2021), the MPC performance has been assessed for a certain period of 

time in a deterministic fashion.  

Since de Wit (2001), MacDonald (2002), and Hopfe (2009) studies, it has been widely acknowledged that 

a whole building performance assessment or any technical system performance assessment (e.g. chiller, 

AHU, cooling tower, etc.) can be biased by epistemic and aleatory uncertainties. Tian et al. (2018) reported 

different types of uncertainties in buildings including weather, thermal properties of building envelopes, 

occupant behavior, HVAC system’s specification data, and simulation parameters (e.g. heat transfer 
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coefficients). Without taking the impact of such uncertainties in assessing the technical system performance, 

significant performance gap can occur (de Wilde, 2014).  

Several MPC studies have been reported to deal with the aforementioned uncertainties. Ma, Matusko, and 

Borrelli (2015) used stochastic weather information to develop a stochastic model-predictive control of 

building HVAC systems. Li, and Wang (2022) cross-compared several MPC strategies under uncertainties 

for optimal utilization of resources in buildings.  

In this paper, the authors present that MPC performance of a variable refrigerant flow (VRF) cooling system 

for the entire cooling season (01 May – 30 Sep.) can be highly stochastic and thus, its performance must be 

assessed in a stochastic fashion. For this study, a typical office space equipped with the VRF cooling system 

was selected. Based on simulation results generated from EnergyPlus, two surrogated models were 

developed to predict energy consumption of the VRF and indoor air temperature. It will be addressed in the 

following sections that there is significant variation in energy savings by MPC depending on the weather 

data. In addition, it will be discussed that MPC itself finds optimal control strategies under different weather 

conditions.  

2 TARGET BUILDING 

The target space is a single-story office located in Seoul, South Korea (Figure 1). It consists of a single 

zone with a floor area of 38.5m2 (7m × 5.5m). The space has a south-facing window and Table 1 shows the 

details of the target space. The thermal properties of the envelopes were selected according to Korean 

building energy standards (KBES) (2022). The outside boundary condition for all surfaces except the south-

facing surface was set as adiabatic because this office was surrounded by identically conditioned spaces. 

The target office was modeled using EnergyPlus developed by the US DOE. It is assumed that the VRF 

system provides cold air during the cooling season. The VRF system changes the refrigerant mass flow rate 

with a variable speed compressor to meet the given cooling load (Aynur 2010). The total capacity of the 

VRF system is 6,000W with a rated coefficient of performance (COP) of 3.2. The COP of the VRF system 

was modeled as shown in Equation 1 that was provided by the VRF manufacturer. Please note that in 

Equation 1, the highest COP is 4.2 at 60% of the part load ratio (PLR) (Figure 2).  (Figure 2). 

 

 

Figure 1: Target office. 
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Table 1: Target office parameters according to Korean building energy standards (2022). 

Parameters Values 

Office  

Location  Seoul, South Korea 

Total floor area [m2] 38.5 

Number of floors  1 

Ceiling height [mm] 3200 

WWR [%] 50 

U-value [W/m2·K] 
Wall 0.15 

Window 0.9 

Fenestration SHGC 0.4 

Cooling system 
Cooling capacity [W] 6,000 

Rated COP  3.2 

Scenario 

Occupant density [m2/person] 9.0 

Equipment density [W/m2] 11.5 

Lighting density [W/m2] 8.0 

Schedule  09:00 – 18:00 

 

𝐶𝑂𝑃 =  −7.8 × 𝑃𝐿𝑅2 + 10 × 𝑃𝐿𝑅 + 1        (1) 

 

 

Figure 2: COP curve of VRF system in the target office. 

3 SURROGATE MODEL                                                                                                                                                                                                         

For the past decades, artificial neural network (ANN) has been successfully applied for estimating heating 

and cooling demands (Yokoyama, Wakui, and Satake 2009), predicting indoor environmental conditions 

(Moon, Yoon, and Kim 2013), and describing non-linear dynamics of cooling and heating systems (Ahn et 

al. 2020). Because an ANN model is capable of describing the dynamic characteristics of mechanical 

systems as well as the thermal behavior of buildings, an ANN model has been used as a surrogate model in 

many MPC studies (IBPSA 2001-2021). 
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In this study, two ANN models were developed in order to predict the future states for the prediction time 

horizon. As will be explained later in section 4, the MPC algorithm must exhaustively search for 729 control 

actions at each timestep, and the use of ANN models will make it more practical in that it lowers the 

computational costs without compromising the ability to mimic the dynamic behaviors of the building and 

its system. The two ANN models predict the energy consumption of the VRF system (ANN #1) and indoor 

air temperature of the target space (Figure 1) (ANN #2), respectively. ANN #1 uses three state variables 

(indoor/outdoor air temperatures and solar radiation) and two control variables (set-point air temperature 

and supply air flow rate) as inputs as shown in Table 2. ANN #2 uses the aforementioned three state 

variables, heat removal rate obtained from ANN #1, and two control variables (set-point air temperature 

and supply air flow rate) as inputs (Table 2). The input state variables are selected as the minimum 

information related to the VRF system that can be measured in actual buildings. The ANN parameters were 

determined using a trial-and-error method (hidden layers: 4, hidden nodes: 30, epochs: 1000, activation 

function: rectified linear unit (ReLU), optimization method: adaptive moment estimation (Adam), and loss 

function: mean squared error (MSE)). 

The control and prediction time horizons were set to 10 minutes and 30 minutes respectively so that the 

control actions can vary at the interval of 10 minutes based on the predicted state variables over the next 30 

minutes. Train (80% of the total) and test (20% of the total) data were generated by EnergyPlus simulation 

from 01 May to 30 Sep. Figure 3 compares the ANN model predictions of the test data to the actual values 

of EnergyPlus simulation. The ANN models showed reliable accuracy in predicting the dynamic behavior 

of the VRF system and the indoor environment with the coefficients of variance root mean square error 

(CVRMSE) within 9.7% and 0.3%. 

 

Table 2: Inputs and outputs of ANN models. 

Model Variables 
Time 

steps 

ANN #1 Inputs State 

variables 

Indoor air temperature [°C, IAT] t-2 

t-1 

t 

 

Outdoor air temperature [°C, OAT] 

Global solar radiation incident on vertical surface 

[W/m2, IG] 

Control 

variables 

Set-point air temperature [°C, SET] 
t+1 

t+2 

t+3 

Supply air flow rate [L/s, SA] 

Outputs Energy consumption by VRF and supply fan [Wh] 

Heat removal rate [W] 

ANN #2 Inputs State 

variables 

Heat removal rate obtained from ANN #1 [W] 

t-2 

t-1 

t 

Indoor air temperature [°C, IAT] 

Outdoor air temperature [°C, OAT] 

Global solar radiation incident on vertical surface 

[W/m2, IG] 

Control 

variables 

Set-point air temperature [°C, SET] t+1 

t+2 

t+3 

Supply air flow rate [L/s, SA] 

Outputs Indoor air temperature [°C, IAT] 
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(a) VRF’s energy consumption by ANN #1 (CVRMSE = 9.7%). 

 

(b) Indoor air temperature by ANN #2 (CVRMSE = 0.3%). 

Figure 3: Comparison between simulated (EnergyPlus) vs. predicted (ANN).  

4 MODEL PREDICTIVE CONTROL (MPC) RESULTS                                                                                                                                                    

An MPC algorithm was designed to minimize the cost function denoted by J (Equation 2), or energy 

consumption of the VRF’s cooling energy over the prediction time horizon while maintaining the indoor 

air temperature in the range of [𝟐𝟑℃, 𝟐𝟓℃] as shown in Equation 2. Given three control options for the 

set-point air temperatures (23℃, 24℃, 25℃) and three supply air flow rates (high (230 L/s), mid (190 L/s), 

low (150 L/s)), the MPC algorithm exhaustively examines all possible control actions for the next three 

timesteps (30 minutes), resulting in 𝟑 × 𝟑 = 𝟗 control actions for each timestep and a total of 𝟗𝟑 = 𝟕𝟐𝟗 

control actions for the next three timesteps.  

  min 𝐽 = 𝐸𝑡+1 + 𝐸𝑡+2 +  𝐸𝑡+3         (2) 

s.t.: 23°C ≤ IATt+1 ≤ 25°C  

For comparison, a baseline VRF control was assumed as follows: the set-point air temperature is 24℃ and 

the supply air flow rate is 230 L/s. Depending on the room’s instantaneous cooling load (Figure 1), the VRF 

automatically controls the current refrigerant’s flow rate without depending on any predicted state variables. 

Thus, the only difference between the baseline control and MPC is whether the predicted state variables are 

employed or not in determining the control actions.  
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In order to investigate time-varying energy savings of the MPC for the entire cooling season and analyze 

the daily and monthly variations in the MPC performance, the simulation was carried out for the complete 

cooling period in South Korea (01 May – 30 Sep.). As a result, Figure 4 shows the distribution of daily 

energy savings of MPC. It ranges from 0.3% (28 Jul) to 20.4% (10 May) with the average of 8.0%. The 

standard deviation (4.6%p) is non-negligible in that it equals 57.5% of the average value. It is not surprising 

that the energy savings of MPC can vary significantly depending on outdoor environment (OAT, IG). This 

signifies that for assessing the MPC performance, its stochastic nature must be carefully reflected. In 

addition, it implies that for the objective assessment of MPC performance, other uncertain variables must 

be considered, e.g. indoor heat generation from lights, people, and equipment, occupant schedule, 

infiltration/ventilation, etc.  

 

Figure 4: Daily energy savings of MPC (01 May – 30 Sep, a total of 153 days). 

Figure 5 shows the relationship between the sum of hourly cooling loads and daily energy savings by MPC. 

The daily energy savings by MPC tends to increase as the sum of hourly cooling loads gets close to both 

extremes denoted by yellow and blue dots in Figure 5. Table 3 also shows environmental data on the three 

days (29 May, 18 Jun, 2 Aug), the sum of hourly cooling loads and energy savings by MPC.  

 

Figure 5: Daily energy savings by MPC in relation to the sum of hourly cooling loads per day.  
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Table 3. Outdoor environmental conditions and energy savings by MPC. 

 
Average OAT 

(‘C) 

Average IG 

(W/m2) 

Sum of hourly 

cooling loads 

(kW) 

Energy savings 

by MPC 

29 May 19.8 176.5 8.7 16.6 % 

18 Jun 29.0 261.6 17.4 5.5 % 

2 Aug 33.7 332.2 25.6 14.4 % 

 

Further analyses of the daily energy savings on the three days (29 May, 18 Jun, 2 Aug) were conducted as 

shown in Figure 6. It is noteworthy that MPC intelligently adapts different control strategies depending on 

the cooling load patterns as follows. (SET: Set-point air temperature [°C], IAT: Indoor air temperature [°C], 

SA: Supply air flow rate [L/s], refer to Table 2 for acronyms) 

⚫ Low cooling load day (29 May): On 29 May, MPC continuously changes SET and SA throughout 

the day, and thus, IAT drifts between 23°C and 25°C. Firstly, MPC takes priority to decrease IAT 

to the lower bound (23°C) despite a momentary high energy consumption and then keeps the VRF 

running on low energy consumption by having the IAT drift from 23°C to 25°C (Figure 6(a)). This 

control strategy becomes viable because 29 May is a ‘low cooling load’ day. This ‘drifting’ process 

is repeated over the day and saves energy by 16.6%. However, the energy saving potential by this 

‘drifting’ would decrease as the cooling load increases.  

⚫ High cooling load day (2 Aug): when the OAT, IG, and cooling load are high (Table 3), MPC takes 

a different strategy as shown in Figure 6(c). MPC maintains IAT close to the upper bound (25°C). 

Throughout the day (2 Aug), the VRF runs at a PLR of about 0.6, operating with a high COP of 

about 4.0 (Figure 2). This ‘high COP’ strategy (PLR = 0.6) makes sense because Aug 2 is a ‘high 

cooling load’ day.  

⚫ Medium cooling load day (18 Jun): it is interesting that under a medium cooling load day (18 Jun), 

the energy savings by MPC is low (Figure 6(b)). In the morning, MPC takes the ‘drifting’ strategy 

similar to Figure 6(a) and in the afternoon, it takes the ‘high COP’ strategy similar to Figure 6(c), 

but the energy saving result is not satisfactory.  It can be inferred that as shown in Figure 7, the 

‘high COP’ and ‘drifting’ strategies are mingled on the medium cooling load day and thus, energy 

saving potentials are decreased.  

 
(a) Low cooling load day (29 May). 
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(b) Medium cooling load day (18 Jun). 

 

 
(c) High cooling load day (2 Aug). 

 

Figure 6: Energy saving analysis of MPC.  

 

Figure 7: Different control strategies under low, medium and high cooling load days.  

5 CONCLUSION 

In this paper, the authors presented a stochastic assessment of MPC performance of a VRF cooling system 

for a single-zone office space during the cooling season (01 May – 30 Sep). For this purpose, EnergyPlus 
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was used to generate two surrogate models (ANN #1, ANN #2). As a result, it is found that the daily energy 

savings by MPC can vary from 0.3% to 20.4% which proves to be highly stochastic. In addition, on a high 

cooling load day, MPC intelligently takes a high COP strategy while MPC repeats the drifting process on 

a low cooling load day.  

This paper suggests that when assessing the VRF performance as well as any other HVAC system 

performance, the aforementioned stochastic characteristics must be carefully reflected. In other words, for 

objective and reproducible performance assessment, uncertainty quantification must be integrated over an 

entire period of time. As indicated in Section 4, decision-making without taking the stochastic nature into 

account may lead to a significant performance gap. 

The limitation of this study is that MPC performance analysis was conducted only under varying weather 

conditions (OAT, IG).  In the follow-up study, the impact of other uncertain parameters, e.g. thermal 

properties, internal heat generation, occupant behavior, etc. on the MPC performance will be included.  
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